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Motivation: the set-theoretic point of view

Compactness/reflexion in set theory:
I Large cardinals.
I GCH, SCH.
I Jensen’s diamond.
I Singular compactness (almost free implies free, Silver’s

theorem, etc.).
I ...

Compactness/reflexion in model theory:
I Compactness theorem for Lω,ω.
I Compactness theorems for Lκ,κ, κ weakly compact,

measurable, strongly compact, supercompact, huge, etc. (c.f.
recent work of Will Boney).

I Chang’s conjecture.
I ?
I Stability theory!
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Stability implies “tame” infinite combinatorics

Theorem (Shelah)

If a first-order theory T is stable in λ, then any sequence of length
λ+ contains an indiscernible subsequence of length λ+.

Thus the partition relation λ+ → (λ+)
<ω
λ holds, when relativized

to the models of T ! (a similar statement holds in AECs)
Goal: study the relationship between set-theoretic and
model-theoretic compactness. Do it in a general framework where
stability theory can be developped.



Universal classes and AECs

A universal class is a class of structures closed under
isomorphism, unions of chains, substructures.

They are exactly the classes axiomatizable by a universal
L∞,ω sentence (Tarksi, 1954) and, up to equivalence of
categories, locally multipresentable categories with all
morphisms monos (Diers 1980, Lieberman-Rosický-V. 2019).

Examples: vector spaces, locally finite groups. Non-example:
algebraically closed fields.

An abstract elementary class (AEC) is a class of structures K
with a partial order ≤K satisfying some properties, including
closure under unions of ≤K-chains and a downward LST
axiom. The expected notion of K-embedding makes any AEC
into a category.

Any AEC is an accessible categories with concrete directed
colimits and all morphisms concrete monos (Lieberman 2011,
Beke-Rosický 2012, ...).
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Types in AECs
If an AEC has amalgamation and joint embedding, it has a
model-homogeneous and universal “monster model” C. Work
inside C.
The type of an element b over a set A, written tp(b/A), is
defined to be the orbit of b under the automorphisms of C
fixing A pointwise. K is stable in λ if it has λ-many types over
every set of size λ. Superstable means stable on a tail.

An AEC is (< χ)-tame if two distinct types over a model are
separated by a subset of size strictly less than χ. Tame means
(< χ)-tame for some χ. Finitely tame means (< ℵ0)-tame.
(this is a weak replacement for compactness)
Universal classes are finitely tame (Boney): take closure under
the functions of C. This can be extended to multiuniversal
classes (Ackerman-Boney-V., 2019).
Unless there are large cardinals, AECs are not always tame.
Near example: the AEC with only (Q, <), A = (0, 1), b = 1,
c = 2. Nontrivial examples: Baldwin-Shelah 2008,
Baldwin-Kolesnikov 2009, Boney-Unger 2017.
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Examples of AECs
I (Mod(T ),�Φ), T a theory in L∞,ω, Φ a fragment containing
φ.

I (Mod(T ),⊆), for T first-order ∀∃. Finitely tame if it has
amalgamation.

I R-Mod, ordered with substructure. Universal class, stable.
Superstable if and only if R is left Noetherian (Eklof 1971,
Mazari-Armida).

I R-Mod, ordered with pure substructure. Finitely tame, stable
(Kucera and Mazari-Armida). Superstable if and only if R is
left pure semisimple (Mazari-Armida).

I Flat R-modules, with flat embeddings (M ≤K N iff N/M is
flat). More generally AECs of “roots of Ext”
(Baldwin-Eklof-Trlifaj 2007). Tame and stable
(Lieberman-Rosický-V.).

I Zilber’s quasiminimal classes. Up to isomorphism of concrete
categories, they are the AECs with countable LST number, a
prime model, intersections, and a unique generic type over
every countable model (V. 2018).



More examples of AECs
I Algebraically closed rank one valued fields. Finitely tame,

stable.
I Existentially closed difference fields with n commuting

automorphisms (Hyttinen-Kangas). Finitely tame,
supersimple.

I AECs of geometric lattices (Hyttinen-Paolini 2018).
I If K is an AEC, so is its restriction to cardinalities above λ, its

class of models omitting a fixed type, or its class of
λ-saturated models (if K is suitably superstable). Elementary
classes are not closed under any of these operations.

I Hart-Shelah example (1990): for each fixed n < ω, an AEC
with LST number ℵ0 categorical in ℵ0, ℵ1, . . . ,ℵn.

I Morley’s example (1965): for each fixed α <
(
2ℵ0

)+
, there is

an AEC with LST number ℵ0 categorical exactly in the
cardinals λ ≥ iα.

I ...
I More known and many more unknown examples.



Three basic results of Shelah

I (The presentation theorem, Sh:88) Any AEC is the
(functorial) reduct of a universal class. Idea: add “Skolem
functions”. If the AEC has arbitrarily large models, one
deduces some leftover compactness (e.g. existence of
Ehrenfeucht-Mostowski models).

I (Amalgamation from successive categoricity, Sh:88) Assume
2λ < 2λ

+
. If an AEC is categorical in λ and λ+, then it has

amalgamation for models of cardinality λ. Idea: suppose not,
build a tree of failures then use the weak diamond, more
precisely the principle Θλ+ (Devlin-Shelah 1978).

I (Saturated = model-homogeneous, Sh:300) In an AEC with
amalgamation, a model is λ-saturated if and only if it is
λ-model-homogeneous. Idea: partial embeddings don’t
behave well in general, so embed “point by point” but using
K-embeddings.
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Shelah’s eventual categoricity conjecture

The categoricity spectrum of a class of structures is the class
of cardinals at which it has exactly one model up to
isomorphism.

What does the categoricity spectrum of an AEC look like?

Shelah’s eventual categoricity conjecture (late 70s, still open):
The categoricity spectrum of an AEC is either bounded or
contains an end segment.

It is a test question to (in particular) develop stability and
superstability theory for AECs.
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Stability theory in tame AECs

In an AEC K with amalgamation, joint embedding, arbitrarily large
models that is tame:

I (V. 2018) Assume SCH. If K is stable, there is χ so that for
high-enough λ, K is stable in λ if and only if λ = λ<χ.

I (Boney-V. 2017, Grossberg-V. 2017, V. 2018) One can
connect in the expected way (an abstract notion of) forking
independence, (super)stability in terms of counting types, and
the behavior of saturated models. For example, K is
superstable if and only if for high-enough λ, unions of chains
of λ-saturated models are λ-saturated.

I Categoricity implies superstability (Shelah-Villaveces 1999, V.
2016, Boney-Grossberg-VanDieren-V. 2017).

I If K has prime over sets of the form Ma, the eventual
categoricity conjecture holds for K (Sh:394,
Grossberg-VanDieren 2006, V. 2018).



Successive categoricity

I (Sh:88) An Lω1,ω-sentence categorical in ℵ0 and ℵ1 must have
a model of size ℵ2. (This is a very weak form of compactness
from successive categoricity)

I (Sh:87ab) Assume WGCH1 + ε. Categoricity of an
Lω1,ω-sentence in all the ℵn’s implies categoricity everywhere.

I (Shelah-V.) Assume WGCH. Categoricity of an AEC in
ω-many successive cardinals implies categoricity everywhere
above.

I (Mazari-Armida and V. 2018) Assume WGCH. A universal
class (in a countable language) categorical in ℵ0 and ℵ1 is
categorical everywhere.

I (V.) A universal class (say in a countable language)
categorical on an end-segment below iω is categorical
everywhere above iω.

12µ < 2θ whenever µ < θ.
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Eventual categoricity

The categoricity spectrum of an AEC K is either bounded or
contains an end segment provided that any of the following holds:

I (V. 2017) K is a universal class. [The proof generalizes to
multiuniversal classes (Ackerman-Boney-V. 2019)].

I (Shelah-V.) There is a strongly compact cardinal above the
LST number of K.

I (V.) Diamond holds at every stationary set and K has no
maximal models.

I (V.) WGCH holds and K has amalgamation and arbitrarily
large models. In fact, in this case (say if the LST number is
countable) the categoricity spectrum is either empty, [ℵm,ℵn]
for m ≤ n < ω, or [χ,∞) for χ < i

(2ℵ0)
+ . There are

examples of each type.
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Proof ideas

The proofs of eventual categoricity proceed by building
notions of independence, understanding superstability at a
fixed cardinal (“good frames”), and (in the non-universal
cases) developping a theory of higher-dimensional
independence to move structural properties across cardinals.
At the end of the proof, ideas from the “successive
categoricity” results are used to find members of AECs of
models omitting a type and contradict categoricity.

A key technical result for the last two theorems is that
“tameness follows from superstability” (V. 2019): essentially,
superstability in λ and λ+ implies λ-tameness for types over
models of cardinality λ+.

In a recent preprint, Christian Esṕındola suggests completely
different arguments, based on topos theory. See also work of
Simon Henry on understanding axiomatizability of AECs using
toposes.
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Some open problems

1. Is the eventual categoricity conjecture true (in ZFC)?

2. Find more occurences of (higher-dimensional) stable
independence “in the wild”.

3. (Shelah-V., 2018) Does tameness follow from ℵ0-stability?
More precisely, let K be an (analytic) AEC that has
amalgamation in ℵ0, is categorical in ℵ0, and is stable in ℵ0.
Is K finitely tame for types over countable models?



Some references

Recent introductory references:

I Sebastien Vasey, Accessible categories, set theory, and model
theory: an invitation, arXiv:1904.11307.

I Will Boney and Sebastien Vasey, A survey on tame abstract
elementary classes, Beyond First Order Model Theory (José
Iovino ed.), CRC Press (2017), 353–427.

I Will Boney, Classification theory for tame abstract elementary
classes. Lecture notes. Accessible from Will Boney’s webpage.

I Sebastien Vasey, Lecture notes on model theory for abstract
elementary classes. Accessible from my webpage.

Other introductory references include Rami Grossberg’s survey
(Classification theory for abstract elementary classes, 2002), John
Baldwin’s book (Categoricity, 2009), and of course Shelah’s not so
introductory two volume book (Classification theory for abstract
elementary classes, 2009).


