A proof of Shelah's eventual categoricity conjecture in universal classes¹

Sebastien Vasey

Carnegie Mellon University

May 24, 2016 2016 North American meeting of the ASL University of Connecticut at Storrs

¹Based upon work done while the author was supported by the Swiss National Science Foundation under Grant No. 155136.

Observation

Let λ be an uncountable cardinal.

- There is a unique Q-vector space with cardinality λ.
- There is a unique algebraically closed field of characteristic zero with cardinality λ.

Definition (Łoś, 1954)

A class K of structure is *categorical in* λ if it has exactly one model of cardinality λ (up to isomorphism).

Observation

Let λ be an uncountable cardinal.

- There is a unique Q-vector space with cardinality λ.
- There is a unique algebraically closed field of characteristic zero with cardinality λ.

Definition (Łoś, 1954)

A class K of structure is *categorical in* λ if it has exactly one model of cardinality λ (up to isomorphism).

Question

If K is "reasonnable", can we say something about the class of cardinals in which K is categorical?

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K is categorical in some $\lambda \geq \aleph_1$, then K is categorical in all $\lambda' \geq \aleph_1$.

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K is categorical in some $\lambda \geq \aleph_1$, then K is categorical in all $\lambda' \geq \aleph_1$.

The proof led to stability theory, which has had a big impact.

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K is categorical in some $\lambda \geq \aleph_1$, then K is categorical in all $\lambda' \geq \aleph_1$.

The proof led to stability theory, which has had a big impact. What if K is not first-order axiomatizable? For example, what if K is axiomatized by an infinitary logic?

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K is categorical in some $\lambda \geq \aleph_1$, then K is categorical in all $\lambda' \geq \aleph_1$.

The proof led to stability theory, which has had a big impact. What if K is not first-order axiomatizable? For example, what if K is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

Let K be the class of models of an $\mathbb{L}_{\omega_1,\omega}$ -sentence. If K is categorical in some $\lambda \geq \beth_{\omega_1}$, then K is categorical in all $\lambda' \geq \beth_{\omega_1}$.

Main result

Definition

An $\mathbb{L}_{\omega_1,\omega}$ -sentence is *universal* if it is of the form $\forall x_0 \forall x_1 \dots \forall x_n \psi$, with ψ quantifier-free.

Theorem (V.)

Let K be the class of models of a *universal* $\mathbb{L}_{\omega_1,\omega}$ -sentence. If K is categorical in *some* $\lambda \geq \beth_{\beth_{\omega_1}}$, then K is categorical in *all* $\lambda' \geq \beth_{\beth_{\omega_1}}$.

More generally...

Definition

A class K of structures in a fixed vocabulary $\tau(K)$ is *universal* if it is closed under isomorphisms, substructure, and union of \subseteq -increasing chains.

More generally...

Definition

A class K of structures in a fixed vocabulary $\tau(K)$ is *universal* if it is closed under isomorphisms, substructure, and union of \subseteq -increasing chains.

For example, \mathbb{Q} -vector spaces are universal but algebraically closed fields are not. Locally finite groups are universal but not first-order axiomatizable. The class of models of a universal $\mathbb{L}_{\infty,\omega}$ sentence is universal (Tarski proved that the converse also holds).

More generally...

Definition

A class K of structures in a fixed vocabulary $\tau(K)$ is *universal* if it is closed under isomorphisms, substructure, and union of \subseteq -increasing chains.

For example, \mathbb{Q} -vector spaces are universal but algebraically closed fields are not. Locally finite groups are universal but not first-order axiomatizable. The class of models of a universal $\mathbb{L}_{\infty,\omega}$ sentence is universal (Tarski proved that the converse also holds).

Theorem (V.)

Let K be a universal class. If K is categorical in *some* $\lambda \geq \beth_{\square_{(2^{|\tau(K)|+\aleph_0})^+}}$, then K is categorical in all $\lambda' \geq \beth_{\square_{(2^{|\tau(K)|+\aleph_0})^+}}$.

A step back: abstract elementary classes Definition (Shelah, 1985)

An abstract elementary class (AEC) is a partial order $\mathbf{K} = (K, \leq_{\mathbf{K}})$ where K is a class of structures in a fixed vocabulary $\tau(\mathbf{K})$, and:

- 1. K is closed under isomorphism, $\leq_{\mathbf{K}}$ respects isomorphisms.
- 2. If $M \leq_{\mathbf{K}} N$, then $M \subseteq N$.
- 3. Coherence: If $M_0 \subseteq M_1 \leq_{\mathbf{K}} M_2$ and $M_0 \leq_{\mathbf{K}} M_2$, then $M_0 \leq_{\mathbf{K}} M_1$.
- 4. Downward Löwenheim-Skolem-Tarski axiom: There is a least cardinal $LS(\mathbf{K}) \ge |\tau(\mathbf{K})| + \aleph_0$ such that for any $N \in K$ and $A \subseteq |N|$, there exists $M \le_{\mathbf{K}} N$ containing A of size at most $LS(\mathbf{K}) + |A|$.
- 5. Chain axioms: If δ is a limit ordinal, $\langle M_i : i < \delta \rangle$ is a $\leq_{\mathbf{K}}$ -increasing chain in K, then $M_{\delta} := \bigcup_{i < \delta} M_i$ is in K, and: 5.1 $M_i \leq_{\mathbf{K}} M_{\delta}$ for all $i < \delta$. 5.2 If $N \in K$ is such that $M_i \leq_{\mathbf{K}} N$ for all $i < \delta$, then $M_{\delta} \leq_{\mathbf{K}} N$.

Examples

▶ If K is a universal class, then $\mathbf{K} = (K, \subseteq)$ is an AEC with $LS(\mathbf{K}) = |\tau(K)| + \aleph_0$.

Examples

- ▶ If K is a universal class, then $\mathbf{K} = (K, \subseteq)$ is an AEC with $LS(\mathbf{K}) = |\tau(K)| + \aleph_0$.
- ► For $\psi \in \mathbb{L}_{\omega_1,\omega}$, Φ a countable fragment containing ψ , $\mathbf{K} := (Mod(\psi), \preceq_{\Phi})$ is an AEC with $LS(\mathbf{K}) = \aleph_0$.

Shelah's eventual categoricity conjecture for AECs

An AEC that is categorical in *some* high-enough cardinal is categorical in *all* high-enough cardinals.

Some earlier approximations

Theorem (Boney, 2014)

If there exists a proper class of strongly compact cardinals, then any AEC categorical in *some* high-enough <u>successor</u> cardinal is categorical in <u>all</u> high-enough cardinals.

Some earlier approximations

Theorem (Boney, 2014)

If there exists a proper class of strongly compact cardinals, then any AEC categorical in *some* high-enough <u>successor</u> cardinal is categorical in *all* high-enough cardinals.

Theorem (Shelah, 2009; assuming an unpublished claim)

Assume $\underline{2^{\lambda} < 2^{\lambda^+}}$ for all cardinals λ . If there exists a proper class of measurable cardinals, then any AEC categorical in *some* high-enough cardinal is categorical in *all* high-enough cardinals.

Theorem (V.)

If a universal class **K** is categorical in some $\lambda \ge \beth_{\square_{(2^{LS(K)})}^+}$, then **K** is categorical in all $\lambda' \ge \beth_{\square_{(2^{LS(K)})}^+}$.

1. Does not use large cardinals.

Theorem (V.)

If a universal class **K** is categorical in some $\lambda \ge \beth_{\square_{(2^{LS(K)})^+}}$, then **K** is categorical in all $\lambda' \ge \beth_{\square_{(2^{LS(K)})^+}}$.

- 1. Does *not* use large cardinals.
- 2. Does not assume that the categoricity cardinal is a successor.

Theorem (V.)

If a universal class **K** is categorical in some $\lambda \ge \beth_{\square_{(2^{LS(K)})}^+}$, then **K** is categorical in all $\lambda' \ge \beth_{\square_{(2^{LS(K)})^+}}$.

- 1. Does not use large cardinals.
- 2. Does not assume that the categoricity cardinal is a successor.
- 3. Does *not* assume any cardinal arithmetic hypotheses (or any unpublished claims). Is proven entirely in ZFC.

Theorem (V.)

If a universal class **K** is categorical in some $\lambda \ge \beth_{\square_{(2^{LS(K)})^+}}$, then **K** is categorical in all $\lambda' \ge \beth_{\square_{(2^{LS(K)})^+}}$.

- 1. Does not use large cardinals.
- 2. Does not assume that the categoricity cardinal is a successor.
- 3. Does *not* assume any cardinal arithmetic hypotheses (or any unpublished claims). Is proven entirely in ZFC.

We *do* assume that K is a universal class. But the proof also applies to AECs satisfying more general hypotheses.

Theorem (V.)

If a universal class $\mathbf{K} = (K, \subseteq)$ is categorical in *some* $\lambda \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$, then \mathbf{K} is categorical in *all* $\lambda' \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$.

Proof steps.

Write $h(\chi) := \beth_{(2\chi)^+}$.

Theorem (V.)

If a universal class $\mathbf{K} = (K, \subseteq)$ is categorical in *some* $\lambda \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$, then \mathbf{K} is categorical in *all* $\lambda' \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$.

Proof steps.

Write $h(\chi) := \beth_{(2\chi)^+}$. **Step 1:** There exists an ordering \leq on **K** such that:

1. $\mathbf{K}' := (\mathbf{K}, \leq)$ is an AEC with $LS(\mathbf{K}') < h(LS(\mathbf{K}))$.

Theorem (V.)

If a universal class $\mathbf{K} = (\mathbf{K}, \subseteq)$ is categorical in *some* $\lambda \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$, then \mathbf{K} is categorical in *all* $\lambda' \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$.

Proof steps.

Write $h(\chi) := \beth_{(2\chi)^+}$. **Step 1:** There exists an ordering \leq on **K** such that:

1. $\mathbf{K}' := (K, \leq)$ is an AEC with $LS(\mathbf{K}') < h(LS(\mathbf{K}))$.

2. \mathbf{K}' has amalgamation, is $LS(\mathbf{K}')$ -tame, and has primes over sets of the form $M \cup \{a\}$.

Theorem (V.)

If a universal class $\mathbf{K} = (K, \subseteq)$ is categorical in *some* $\lambda \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$, then \mathbf{K} is categorical in *all* $\lambda' \ge \beth_{\beth_{(2^{\mathsf{LS}(\mathsf{K})})^+}}$.

Proof steps.

Write $h(\chi) := \beth_{(2\chi)^+}$. **Step 1:** There exists an ordering \leq on **K** such that:

1. $\mathbf{K}' := (\mathbf{K}, \leq)$ is an AEC with $LS(\mathbf{K}') < h(LS(\mathbf{K}))$.

2. \mathbf{K}' has amalgamation, is $LS(\mathbf{K}')$ -tame, and has primes over sets of the form $M \cup \{a\}$.

Step 2: For any such \mathbf{K}' , categoricity in *some* $\mu \ge h(\mathsf{LS}(\mathbf{K}'))$ implies categoricity in *all* $\mu' \ge h(\mathsf{LS}(\mathbf{K}'))$.

Amalgamation

Definition

An AEC **K** has *amalgamation* if whenever $M_0 \leq_{\mathbf{K}} M_\ell$, $\ell = 1, 2$, there exists $N \in \mathbf{K}$ and $f_\ell : M_\ell \xrightarrow[M_0]{} N$.

Amalgamation

Definition

An AEC **K** has *amalgamation* if whenever $M_0 \leq_{\mathbf{K}} M_\ell$, $\ell = 1, 2$, there exists $N \in \mathbf{K}$ and $f_\ell : M_\ell \xrightarrow[M_0]{} N$.

Amalgamation can fail in general AECs, even in universal classes.

Theorem (Kolesnikov and Lambie-Hanson, 2015)

For every $\alpha < \omega_1$, there exists a universal class in a countable vocabulary that has amalgamation up to \beth_{α} but fails amalgamation starting at \beth_{ω_1} .

Galois types and tameness

Definition

For ${\bf K}$ an AEC with amalgamation:

(Shelah) gtp(a/M₀; M₁) = gtp(b/M₀; M₂) if there exists N with:

and $f_1(a) = f_2(b)$.

Galois types and tameness

Definition

For \mathbf{K} an AEC with amalgamation:

(Shelah) gtp(a/M₀; M₁) = gtp(b/M₀; M₂) if there exists N with:

and $f_1(a) = f_2(b)$.

► (Grossberg-VanDieren) **K** is χ -tame if whenever gtp $(a/M_0; M_1) \neq$ gtp $(b/M_0; M_2)$, there exists $M_0^0 \leq_{\mathbf{K}} M_0$ with $||M_0^0|| \leq \chi$ and gtp $(a/M_0^0; M_1) \neq$ gtp $(b/M_0^0; M_2)$.

Primes

Definition (Shelah)

An AEC **K** has primes if for any Galois type p over M_0 , there exists a triple (a, M_0, M_1) such that $p = gtp(a/M_0; M_1)$ and whenever $p = gtp(b/M_0; M_2)$, there exists $f : M_1 \xrightarrow{M_0} M_2$ with f(a) = b.

(in the diagram below, a = b):

Primes

Definition (Shelah)

An AEC **K** has primes if for any Galois type p over M_0 , there exists a triple (a, M_0, M_1) such that $p = gtp(a/M_0; M_1)$ and whenever $p = gtp(b/M_0; M_2)$, there exists $f : M_1 \xrightarrow{M_0} M_2$ with f(a) = b.

(in the diagram below, a = b):

In vector spaces, the span of M_0a gives a prime model over M_0a . More generally, in universal classes the closure of M_0a to a substructure gives the prime model.

Let **K** be a LS(**K**)-tame AEC with amalgamation and primes. Let $\mu < \lambda$ both be "high-enough" categoricity cardinals. We show that **K** is categorical in μ^+ .

1. **K** is "good" in μ .

- 1. **K** is "good" in μ .
- 2. AFSOC that **K** is *not* categorical in μ^+ . Then a type *p* over a model of size μ is omitted by a model of size μ^+ .

- 1. **K** is "good" in μ .
- 2. AFSOC that **K** is *not* categorical in μ^+ . Then a type *p* over a model of size μ is omitted by a model of size μ^+ .
- K_{¬p}, the class of models omitting p, is an AEC and it is "good" in μ. Further, K_{¬p} is tame and has primes.

- 1. **K** is "good" in μ .
- 2. AFSOC that **K** is *not* categorical in μ^+ . Then a type *p* over a model of size μ is omitted by a model of size μ^+ .
- K_{¬p}, the class of models omitting p, is an AEC and it is "good" in μ. Further, K_{¬p} is tame and has primes.
- 4. Goodness transfers up (uses tameness and primes): $\mathbf{K}_{\neg p}$ is "good" also above μ .

- 1. **K** is "good" in μ .
- 2. AFSOC that **K** is *not* categorical in μ^+ . Then a type *p* over a model of size μ is omitted by a model of size μ^+ .
- K_{¬p}, the class of models omitting p, is an AEC and it is "good" in μ. Further, K_{¬p} is tame and has primes.
- 4. Goodness transfers up (uses tameness and primes): $\mathbf{K}_{\neg p}$ is "good" also above μ .
- 5. By "goodness", $\mathbf{K}_{\neg p}$ has a model of cardinality λ .

- 1. **K** is "good" in μ .
- 2. AFSOC that **K** is *not* categorical in μ^+ . Then a type *p* over a model of size μ is omitted by a model of size μ^+ .
- K_{¬p}, the class of models omitting p, is an AEC and it is "good" in μ. Further, K_{¬p} is tame and has primes.
- 4. Goodness transfers up (uses tameness and primes): $\mathbf{K}_{\neg p}$ is "good" also above μ .
- 5. By "goodness", $\mathbf{K}_{\neg p}$ has a model of cardinality λ .
- 6. This contradicts categoricity in λ (the model there is saturated).

- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes. Parts I & II. Preprints.
- Sebastien Vasey, Shelah's eventual categoricity conjecture in tame AECs with primes. Preprint.
- Sebastien Vasey, Downward categoricity from a successor inside a good frame. Preprint.

- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes. Parts I & II. Preprints.
- Sebastien Vasey, Shelah's eventual categoricity conjecture in tame AECs with primes. Preprint.
- Sebastien Vasey, Downward categoricity from a successor inside a good frame. Preprint.
- Saharon Shelah, Classification theory for abstract elementary classes. Studies in Logic: Mathematical logic and foundations, vol. 18 & 20, College Publications. 2009 [The introduction is available online: Number E53 on Shelah's list].

- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes. Parts I & II. Preprints.
- Sebastien Vasey, Shelah's eventual categoricity conjecture in tame AECs with primes. Preprint.
- Sebastien Vasey, Downward categoricity from a successor inside a good frame. Preprint.
- Saharon Shelah, Classification theory for abstract elementary classes. Studies in Logic: Mathematical logic and foundations, vol. 18 & 20, College Publications. 2009 [The introduction is available online: Number E53 on Shelah's list].
- John T. Baldwin, *Categoricity*. University Lecture Series, vol. 50, American Mathematical Society, 2009.

- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes. Parts I & II. Preprints.
- Sebastien Vasey, Shelah's eventual categoricity conjecture in tame AECs with primes. Preprint.
- Sebastien Vasey, Downward categoricity from a successor inside a good frame. Preprint.
- Saharon Shelah, Classification theory for abstract elementary classes. Studies in Logic: Mathematical logic and foundations, vol. 18 & 20, College Publications. 2009 [The introduction is available online: Number E53 on Shelah's list].
- John T. Baldwin, *Categoricity*. University Lecture Series, vol. 50, American Mathematical Society, 2009.
- Will Boney and Sebastien Vasey, A survey on tame abstract elementary classes. To appear in Beyond first order model theory.