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Introduction

Observation

Let λ be an uncountable cardinal.

I There is a unique Q-vector space with cardinality λ.

I There is a unique algebraically closed field of characteristic
zero with cardinality λ.

Definition ( Loś, 1954)

A class K of structure is categorical in λ if it has exactly one
model of cardinality λ (up to isomorphism).

Question

If K is “reasonnable”, can we say something about the class of
cardinals in which K is categorical?
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Introduction

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

The proof led to stability theory, which has had a big impact.
What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

Let K be the class of models of an Lω1,ω-sentence. If K is
categorical in some λ ≥ iω1 , then K is categorical in all λ′ ≥ iω1 .



Introduction

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

The proof led to stability theory, which has had a big impact.

What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

Let K be the class of models of an Lω1,ω-sentence. If K is
categorical in some λ ≥ iω1 , then K is categorical in all λ′ ≥ iω1 .



Introduction

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

The proof led to stability theory, which has had a big impact.
What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

Let K be the class of models of an Lω1,ω-sentence. If K is
categorical in some λ ≥ iω1 , then K is categorical in all λ′ ≥ iω1 .



Introduction

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

The proof led to stability theory, which has had a big impact.
What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

Let K be the class of models of an Lω1,ω-sentence. If K is
categorical in some λ ≥ iω1 , then K is categorical in all λ′ ≥ iω1 .



Main result

Definition

An Lω1,ω-sentence is universal if it is of the form ∀x0∀x1 . . . ∀xnψ,
with ψ quantifier-free.

Theorem (V.)

Let K be the class of models of a universal Lω1,ω-sentence. If K is
categorical in some λ ≥ iiω1

, then K is categorical in all
λ′ ≥ iiω1

.



More generally...

Definition

A class K of structures in a fixed vocabulary τ(K ) is universal if it
is closed under isomorphisms, substructure, and union of
⊆-increasing chains.

For example, Q-vector spaces are universal but algebraically closed
fields are not. Locally finite groups are universal but not first-order
axiomatizable. The class of models of a universal L∞,ω sentence is
universal (Tarski proved that the converse also holds).

Theorem (V.)

Let K be a universal class. If K is categorical in some
λ ≥ ii

(2|τ(K)|+ℵ0)
+ , then K is categorical in all λ′ ≥ ii

(2|τ(K)|+ℵ0)
+ .
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A step back: abstract elementary classes

Definition (Shelah, 1985)

An abstract elementary class (AEC) is a partial order K = (K ,≤K)
where K is a class of structures in a fixed vocabulary τ(K), and:

1. K is closed under isomorphism, ≤K respects isomorphisms.

2. If M ≤K N, then M ⊆ N.

3. Coherence: If M0 ⊆ M1 ≤K M2 and M0 ≤K M2, then
M0 ≤K M1.

4. Downward Löwenheim-Skolem-Tarski axiom: There is a least
cardinal LS(K) ≥ |τ(K)|+ ℵ0 such that for any N ∈ K and
A ⊆ |N|, there exists M ≤K N containing A of size at most
LS(K) + |A|.

5. Chain axioms: If δ is a limit ordinal, 〈Mi : i < δ〉 is a
≤K-increasing chain in K , then Mδ :=

⋃
i<δMi is in K , and:

5.1 Mi ≤K Mδ for all i < δ.
5.2 If N ∈ K is such that Mi ≤K N for all i < δ, then Mδ ≤K N.



Examples

I If K is a universal class, then K = (K ,⊆) is an AEC with
LS(K) = |τ(K )|+ ℵ0.

I For ψ ∈ Lω1,ω, Φ a countable fragment containing ψ,
K := (Mod(ψ),�Φ) is an AEC with LS(K) = ℵ0.
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Shelah’s eventual categoricity conjecture for AECs

An AEC that is categorical in some high-enough cardinal is
categorical in all high-enough cardinals.



Some earlier approximations

Theorem (Boney, 2014)

If there exists a proper class of strongly compact cardinals, then
any AEC categorical in some high-enough successor cardinal is
categorical in all high-enough cardinals.

Theorem (Shelah, 2009; assuming an unpublished claim)

Assume 2λ < 2λ
+

for all cardinals λ. If there exists
a proper class of measurable cardinals, then any AEC categorical in
some high-enough cardinal is categorical in all high-enough
cardinals.
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Advantages

Theorem (V.)

If a universal class K is categorical in some λ ≥ ii
(2LS(K))

+ , then K

is categorical in all λ′ ≥ ii
(2LS(K))

+ .

1. Does not use large cardinals.

2. Does not assume that the categoricity cardinal is a successor.

3. Does not assume any cardinal arithmetic hypotheses (or any
unpublished claims). Is proven entirely in ZFC.

We do assume that K is a universal class. But the proof also
applies to AECs satisfying more general hypotheses.
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Two main steps of the proof

Theorem (V.)

If a universal class K = (K ,⊆) is categorical in some
λ ≥ ii

(2LS(K))
+ , then K is categorical in all λ′ ≥ ii

(2LS(K))
+ .

Proof steps.

Write h(χ) := i(2χ)+ .

Step 1: There exists an ordering ≤ on K such that:

1. K′ := (K ,≤) is an AEC with LS(K′) < h(LS(K)).

2. K′ has amalgamation, is LS(K′)-tame, and has primes over
sets of the form M ∪ {a}.

Step 2: For any such K′, categoricity in some µ ≥ h(LS(K′))
implies categoricity in all µ′ ≥ h(LS(K′)).
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Amalgamation

Definition

An AEC K has amalgamation if whenever M0 ≤K M`, ` = 1, 2,
there exists N ∈ K and f` : M` −−→

M0

N.

M1
f1
// N

M0

OO

// M2

f2

OO

Amalgamation can fail in general AECs, even in universal classes.

Theorem (Kolesnikov and Lambie-Hanson, 2015)

For every α < ω1, there exists a universal class in a countable
vocabulary that has amalgamation up to iα but fails
amalgamation starting at iω1 .
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Galois types and tameness

Definition

For K an AEC with amalgamation:

I (Shelah) gtp(a/M0;M1) = gtp(b/M0;M2) if there exists N
with:

M1
f1
// N

M0

[a]

OO

[b]
// M2

f2

OO

and f1(a) = f2(b).

I (Grossberg-VanDieren) K is χ-tame if whenever
gtp(a/M0;M1) 6= gtp(b/M0;M2), there exists M0

0 ≤K M0

with ‖M0
0‖ ≤ χ and gtp(a/M0

0 ;M1) 6= gtp(b/M0
0 ;M2).
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Primes

Definition (Shelah)

An AEC K has primes if for any Galois type p over M0, there exists
a triple (a,M0,M1) such that p = gtp(a/M0;M1) and whenever
p = gtp(b/M0;M2), there exists f : M1 −−→

M0

M2 with f (a) = b.

(in the diagram below, a = b):

M1

f ""
M0a

OO

// M2

In vector spaces, the span of M0a gives a prime model over M0a.
More generally, in universal classes the closure of M0a to a
substructure gives the prime model.
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Proof sketch for a weak version of step 2

Let K be a LS(K)-tame AEC with amalgamation and primes. Let
µ < λ both be “high-enough” categoricity cardinals. We show that
K is categorical in µ+.

1. K is “good” in µ.

2. AFSOC that K is not categorical in µ+. Then a type p over a
model of size µ is omitted by a model of size µ+.

3. K¬p, the class of models omitting p, is an AEC and it is
“good” in µ. Further, K¬p is tame and has primes.

4. Goodness transfers up (uses tameness and primes): K¬p is
“good” also above µ.

5. By “goodness”, K¬p has a model of cardinality λ.

6. This contradicts categoricity in λ (the model there is
saturated).
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