
Stability theory for concrete categories

Sebastien Vasey

Harvard University

December 4, 2019
University of Maryland

College Park



A puzzle
If six students come to a party, then three of them all know each
other, or three of them all do not know each other. More formally
and generally:

Theorem (Ramsey, 1930)

For any natural number k , there exists a natural number n such
that:

n→ (k)2

The notation is due to Erdős and Rado. It means: for any set X
with at least n elements and any coloring F :

(X
2

)
→ {0, 1}, there

exists H ⊆ X with |H| = k so that F �
(H
2

)
is constant (we call H

a homogeneous set for F ).

If k = 3, n = 6 suffices. If k = 5, the optimal value of n is not
known.
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An infinite variation on the puzzle

If an infinite number of students come to a party, then
infinitely-many all know each other or infinitely-many all do not
know each other.

More formally:

Theorem (Ramsey, 1930)

ℵ0 → (ℵ0)2

Said differently, for any set X with |X | ≥ ℵ0 and any coloring
F :

(X
2

)
→ {0, 1}, there exists H ⊆ X so that |H| = ℵ0 and

F �
(H
2

)
is constant.

The theorem does not rule out a party with uncountably-many
students where all friends/strangers groups (= homogeneous sets)
are countable.
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The set theorist’s dream

For any infinite cardinal λ, if λ students come to a party, then
there is a group of λ-many that all know each other or a group of
λ-many that all do not know each other. That is:

λ→ (λ)2

This is wrong for most cardinals λ.
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The Sierpiński coloring

Proposition (Sierpiński)

|R| 6→ (|R|)2.

Proof.

Fix a well-ordering C of the reals. Set F ({x , y}) = 1 when x < y
iff x C y , and F ({x , y}) = 0 otherwise (F is called the Sierpiński
coloring). Assume for a contradiction H is an uncountable
homogeneous set for F . Without loss of generality, for x , y ∈ H,
x < y if and only if x C y . As C is a well-ordering, each x ∈ H has
an immediate successor x ′ in H. Find a rational rx between x and
x ′. Then x → rx is an injection of H (uncountable) into the
rationals (countable), contradiction.

The Sierpiński coloring relies on a well-ordering of the reals. What
if we consider only “definable/simple” colorings?
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The Sierpiński coloring

Proposition (Sierpiński)
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A counterexample with an infinite number of colors

Proposition (Erdős-Kakutani)

|R| 6→ (3)ℵ0

Proof.

Take F ({x , y}) = some rational between x and y . A set H
homogeneous for F cannot contain three elements!

In the reals, a countable set allows one to distinguish
uncountably-many points. There are however many structures
where this is not the case.
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The set theorist’s dream in the complex numbers

Proposition

If F : [C]2 → {0, 1} is a coloring of the unordered pairs of complex
numbers in two colors such that F ({f (x), f (y)}) = F ({x , y}) for
any field automorphism f of C, then F has a homogeneous set of
cardinality |C|.

Proof.

Any transcendence basis for C does the job.

This proves |C| → |C|2 but “relativized to C” (for colorings
preserved by automorphisms).
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Types
A category K has amalgamation if any diagram of the form
B ← A→ C can be completed to a commuting square (no
universal property required – this is much weaker than pushouts).

Definition

Given a concrete category K with amalgamation and an object A

of K, a type over A is just a pair (x ,A
f−→ B), with x ∈ B. Two

types (x ,A
f−→ B), (y ,A

g−→ C ) are considered the same if there
exists maps h1, h2 so that h1(x) = h2(y) and the following diagram
commutes:

B D

A C

h1

f

g

h2
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Types in fields, linear orders, and graphs

Essentially, one can think of types over a fixed base A as the orbits
of an automorphism group fixing A.

The base matters. For example in the category of fields, e
1
3 and e

1
2

have the same type over Q but not the same type over Q(e).

In the category of fields, there are at most max(|A|,ℵ0) types over
every object A (just one type for the transcendental element).

In the category of linear orders, there are |R| types over Q. In
general, types correspond to Dedekind cuts.

In the category of graphs with induced subgraph embeddings, there
are at least 2|V (G)| types over any graph G .

If we restrict to graphs with finite degrees, we obtain again at most
max(|V (G )|,ℵ0) types over G
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Definition (Stability)

A concrete category K is stable in λ if there are at most λ-many
types over any object of cardinality λ. Stable means stable in an
unbounded class, and superstable means stable on an
end-segment. Unstable means not stable.

I The category of graphs with induced subgraph embeddings
and the category of linear orders are unstable. The category
of fields is superstable.

I (Eklof 1971, Mazari-Armida) The category of R-modules with
embeddings is always stable, and superstable if and only if R
is left Noetherian.

I (Kucera and Mazari-Armida) The category of R-modules with
pure embeddings is always stable, and superstable if and only
if R is left pure-semisimple.
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The set theorist’s dream in stable AECs

Theorem (V.)

If K is an abstract elementary class with amalgamation and K is
stable in λ, then:

λ+
K−→

(
λ+

)
λ

Here λ+ is the cardinal right after λ.

The partition notation means that given objects A→ B in K with
|A| = λ, |B| = λ+, if F is a coloring of pairs from B in λ-many
colors so that any two pairs with the same type over A have the
same color, then we can find a homogeneous set for F of
cardinality λ+.

What an abstract elementary class (AEC) is will be explained in
the next slide. All the examples given so far are AECs.
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Theorem (V.)

If K is an abstract elementary class with amalgamation and K is
stable in λ, then:

λ+
K−→

(
λ+

)
λ

Definition (Shelah, late 1970s)

An abstract elementary class (AEC) is a concrete category K
satisfying the following conditions:

I All morphisms are concrete monomorphisms (injections).

I K has concrete directed colimits (also known as direct limits –
basically closure under unions of increasing chains).

I (Smallness condition) Every object is a directed colimit of a
fixed set of “small” subobjects.



Examples of abstract elementary classes

All the categories mentioned before are AECs.

Noetherian rings do not form an AEC: the chain
Z→ Z[x1]→ Z[x1, x2]→ . . . does not have a colimit.

Any AEC is an accessible category: a category with all sufficiently
directed colimits satisfying a certain smallness condition.
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Abstract elementary classes and logic
For any set T of first-order sentences, the category Mod(T ) of
models of T forms an AEC (the morphisms are the functions
preserving all formulas).

We will call such a category a first-order class. It is one of the
basic objects of study in model theory.

Stability theory was developped for first-order classes first, by
Saharon Shelah.
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Beyond first-order classes

There are some good reasons to look at more general classes. On
the logic side, one can consider the infinitary logic L∞,ω, where
infinite conjunctions and disjunctions are allowed (this logic also
yields AECs, and usually any problem that is hard for AECs is hard
already for this logic).

For example, we can say:

(∀x)(x < 1 ∨ x < 1 + 1 ∨ x < 1 + 1 + 1 ∨ . . .)

which is part of the axioms for an Archimedean ordered field.

First-order classes are important, because of the compactness
theorem: if all finite subsets of a given theory have a model, then
the whole theory has a model. This is powerful (one can use it to
build models for nonstandard analysis) but means that many
interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.
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Examples

I The category of algebraically closed fields (with field
homomorphisms) is first-order.

I However the category of fields is not: while the axioms of
fields are first-order, the embedding Q→ R does not preserve
all formulas (consider (∃x)(x · x = 2)).

I In fact none of the other examples given so far are first-order.
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Eventual categoricity

Theorem (Morley, 1965)

A countable set of first-order sentences with a single model of
some uncountable cardinality has a single model in all uncountable
cardinalities.

Morley’s theorem was generalized to all first-order classes by
Shelah (1974). He then asked about infinitary logics, and
introduced AECs as a general framework to study the following
question (Shelah’s eventual categoricity conjecture).

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a
single object in all high-enough cardinalities.

One motivating goal is to develop stability theory for AECs.
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Shelah’s eventual categoricity conjecture

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a
single object in all high-enough cardinalities.

The conjecture is still open.

Partial approximations before
my thesis include: Shelah 1983, Makkai-Shelah
1990, Shelah 1999, Shelah-Villaveces
1999, VanDieren 2006, Grossberg-VanDieren 2006,
Shelah 2009, Hyttinen-Kesälä 2011, Boney 2014.
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Toward Shelah’s eventual categoricity conjecture

Theorem (V. 2017)

Shelah’s eventual categoricity conjecture is true for universal AECs.

Theorem (Shelah-V.)

Shelah’s eventual categoricity conjecture is true for all AECs,
assuming a large cardinal axiom (there exists a proper class of
strongly compact cardinals).

Theorem (V. 2019)

Assuming the GCH, Shelah’s eventual categoricity conjecture is
true for AECs with amalgamation. In this case one can list all
possibilities for the class of cardinals in which the category has a
unique object.
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Locality of types

Definition (Grossberg-VanDieren 2006)

A concrete category is tame if any two distinct types over the same
base are already distinct when restricted to a “small” base.

The category of fields is tame: to distinguish two algebraic
elements, one just needs their minimal polynomial. Also, any
first-order class is tame (by the compactness theorem).

Not all AECs are tame in general. Boney (2014) showed tameness
follows from a large cardinal axiom, and always holds in universal
AECs.

Still, at the time there was some doubt about how reasonable it
was to assume tameness.
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Theorem (V. 2019)

Assuming the GCH, any AEC with amalgamation and a unique
object in some high-enough cardinal is tame.

This solves a conjecture of Grossberg-VanDieren.

Theorem (Lieberman-Rosický-V.)

AECs of “Roots of Ext” (Baldwin-Ekolf-Trlifaj 2007) are tame.

Theorem (Kucera and Mazari-Armida)

The AEC of R-modules with pure embeddings is tame.
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Some characterizations of stability

Theorem (Stability spectrum, V. 2018)

Assume the GCH. For any stable tame AEC K with amalgamation,
there is γ such that for all high-enough λ, K is stable in λ if and
only if λ = λ<γ .

Theorem (V. 2016, Boney)

A tame AEC K with amalgamation is stable if and only if it does

not have the “order property”: any faithful functor Lin
F−→ K

factors through the forgetful functor.

Lin K

Set

F

U
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Order in graphs: an intermission

Graphs with induced subgraph embeddings are unstable, so they
must have the order property: where is it?

It is given by a half graph: for any linear ordering L, consider the
bipartite graph on L t L where we put an edge from i to j if only if
i ≤ j (the picture below is for L = {1, 2, 3, 4, 5, 6, 7}):

Graphs omitting half graphs are studied in finite combinatorics too
(Malliaris-Shelah, Regularity lemmas for stable graphs. TAMS
2014).
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Stable independence

The proofs of the eventual categoricity conjecture, of the stability

spectrum theorem, and of the partition theorem λ+
K−→ (λ+)λ

involve describing what it means for a type to be “determined”
over a small base. This is called forking in the first-order context,
and is the key tool developped by Shelah in his classification theory
book. It generalizes algebraic independence in fields.

Unfortunately Shelah’s definition is syntactic, hard to describe, and
some properties depend on compactness. With my collaborators,
we found a completely category-theoretic definition.
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Definition (Equivalence of amalgam)

Consider a diagram: B ← A→ C

Two amalgams B → Da ← C , B → Db ← C of this diagram are
equivalent if there exists D and arrows making the following
diagram commute:

Db

B Da

A C

Example: in Setmono , {0} and {1} have two non-equivalent
amalgams over ∅: {0, 1} and {1} (with the expected morphisms).
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Definition (Stable independence; Lieberman-Rosický-V., 2019)

A stable independence notion is a class of squares (called
independent squares, marked with ^) such that:

1. Independent squares are closed under equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent
square.

3. Uniqueness: any two independent amalgam of the same span
are equivalent.

4. Symmetry:

B D C D

A C A B

^ ⇒ ^
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A stable independence notion is a class of squares (called
independent squares, marked with ^) such that:

1. Independent squares are closed under equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent
square.

3. Uniqueness: any two independent amalgam of the same span
are equivalent.

4. Symmetry:

B D C D

A C A B

^ ⇒ ^



Definition (Stable independence; Lieberman-Rosický-V., 2019)
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Definition (stable independence notion - continued)

5. Transitivity:

B D F B F

A C E A E

^ ^ ⇒
^

6. Accessibility: the category whose objects are arrows and whose
morphisms are independent squares is accessible. This implies
that any arrow can be “filtered” in an independent way:

M N

Mi Ni

^
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Theorem (Canonicity theorem; Lieberman-Rosický-V. 2019)

A category with directed colimits (in particular an AEC) has at
most one stable independence notion.

In any accessible category with pushouts, the class of all squares
forms a stable independence notion.

In very simple AECs, like the AEC of vector spaces or sets, stable
independence is given by pullback squares. In the AEC of fields,
the definition is essentially given by algebraic independence.

Theorem (Lieberman-Rosický-V. 2019)

An AEC with a stable independence notion has amalgamation, is
tame, and is stable.

Certain converses are true too (for example in first-order classes, or
assuming large cardinals).
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Stable independence and cofibrant generation

Theorem (Lieberman-Rosický-V.)

Let K be an accessible, bicomplete category (like the category of
R-modules with homomorphisms). Let M be a class of morphisms
of K such that:

1. M contains all isomorphisms, is closed under transfinite
compositions, pushouts, and retracts.

2. The induced category KM is accessible and closed under
directed colimits in K.

3. M is coherent: if A
f−→ B

g−→ C , g , gf ∈M, then f ∈M.

Then KM has stable independence if and only if M is cofibrantly
generated (i.e. can be generated from a subset using transfinite
compositions, pushouts, and retracts).
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New examples of stable independence

Corollary (Lieberman-Rosický-V.)

1. The AEC of flat R-modules with flat morphisms (more
generally, any AEC of “roots of Ext”) has stable
independence.

2. Any Grothendieck topos restricted to regular monos has stable
independence.

3. Any Grothendieck abelian category restricted to monos has
stable independence.

4. Any Cisinski model category restricted to monos has stable
independence.
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Summary and future work

Stability theory studies universes where things are “locally
generated”, and a nice infinite combinatorics is possible.

It was developped for classes axiomatized by first-order theories by
Shelah in the seventies.

In hindsight, it seems this was too restrictive: many interesting
categories are not first-order but still admit stability theory.

The notion of stable independence is central to stability theory.
The category-theoretic definition is simple, and it seems it should
appear in more places: where else can we find it?

The category-theoretic definition of stable independence also
naturally yields higher-dimensional generalizations (independent
cubes). These are well known in model theory but the earlier
definitions are ad-hoc and complicated. The goal is now to develop
a systematic theory, and also to find more examples.
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