### Indiscernible extraction and Morley sequences

Sebastien Vasey

Carnegie Mellon University

July 19, 2014 Logic Colloquium 2014 Vienna University of Technology

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

### In ZFC minus replacement:

#### Theorem

Let T be a simple first-order theory. Let  $M \models T$  and let  $A \subseteq B \subseteq |M|$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then (inside some elementary extension of M) there is a Morley sequence  $\langle \bar{b}_i \mid i < \omega \rangle$  for p over A.

### In ZFC minus replacement:

#### Theorem

Let T be a simple first-order theory. Let  $M \models T$  and let  $A \subseteq B \subseteq |M|$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then (inside some elementary extension of M) there is a Morley sequence  $\langle \bar{b}_i \mid i < \omega \rangle$  for p over A.

### Corollary (Independently proven by Tsuboi)

In simple theories, forking is the same as dividing.

### In ZFC minus replacement:

#### Theorem

Let T be a simple first-order theory. Let  $M \models T$  and let  $A \subseteq B \subseteq |M|$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then (inside some elementary extension of M) there is a Morley sequence  $\langle \bar{b}_i \mid i < \omega \rangle$  for p over A.

### Corollary (Independently proven by Tsuboi)

In simple theories, forking is the same as dividing.

In ZFC both results are well known, but we give a new proof that uses only axioms from "ordinary" mathematics.

### In ZFC minus replacement:

#### Theorem

Let T be a simple first-order theory. Let  $M \models T$  and let  $A \subseteq B \subseteq |M|$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then (inside some elementary extension of M) there is a Morley sequence  $\langle \bar{b}_i \mid i < \omega \rangle$  for p over A.

### Corollary (Independently proven by Tsuboi)

In simple theories, forking is the same as dividing.

- In ZFC both results are well known, but we give a new proof that uses only axioms from "ordinary" mathematics.
- This answers questions of Baldwin and Grossberg, Iovino, Lessmann.

Sebastien Vasey

■ We want to avoid using "big" cardinals like □<sub>(2|T|)+</sub> (they are rarely used when the theory is *stable*).

- We want to avoid using "big" cardinals like □<sub>(2|T|)+</sub> (they are rarely used when the theory is *stable*).
- The proofs usually give more information.

- We want to avoid using "big" cardinals like ¬<sub>(2|T|)+</sub> (they are rarely used when the theory is *stable*).
- The proofs usually give more information.
- In our case, we obtain a new characterization of simplicity in terms of definability of forking (pointed out by Kaplan).

- We want to avoid using "big" cardinals like ¬<sub>(2|T|)+</sub> (they are rarely used when the theory is *stable*).
- The proofs usually give more information.
- In our case, we obtain a new characterization of simplicity in terms of definability of forking (pointed out by Kaplan).
- Harnik's work on the reverse mathematics of stability theory.

- We want to avoid using "big" cardinals like ¬<sub>(2|T|)+</sub> (they are rarely used when the theory is *stable*).
- The proofs usually give more information.
- In our case, we obtain a new characterization of simplicity in terms of definability of forking (pointed out by Kaplan).
- Harnik's work on the reverse mathematics of stability theory.
- However, for convenience only, we will work inside a big saturated-enough monster model of a fixed first-order theory *T*.

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

J is said to be an *independent sequence for p over A* if:

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

J is said to be an *independent sequence for p over A* if:

**1** For all 
$$j < \alpha$$
,  $\bar{a}_j \models p$ .

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

**J** is said to be an *independent sequence for* p *over* A if:

**1** For all 
$$j < \alpha$$
,  $\bar{a}_j \models p$ .

2 For all  $j < \alpha$ , tp $(\bar{a}_j/B \cup \{\bar{a}_{j'} \mid j' < j\})$  does not fork over A.

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

**J** is said to be an *independent sequence for* p *over* A if:

**1** For all  $j < \alpha$ ,  $\bar{a}_j \models p$ .

2 For all  $j < \alpha$ ,  $tp(\bar{a}_j/B \cup \{\bar{a}_{j'} \mid j' < j\})$  does not fork over A.

J is said to be a Morley sequence for p over A if:

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

**J** is said to be an *independent sequence for* p *over* A if:

**1** For all  $j < \alpha$ ,  $\bar{a}_j \models p$ .

**2** For all  $j < \alpha$ ,  $tp(\bar{a}_j/B \cup \{\bar{a}_{j'} \mid j' < j\})$  does not fork over A.

- J is said to be a Morley sequence for p over A if:
  - **1** J is an independent sequence for p over A.

### Definition

Let  $\mathbf{J} := \langle \bar{\mathbf{a}}_j \mid j < \alpha \rangle$  be a sequence of finite tuples of the same arity. Let  $A \subseteq B$  be sets, and let  $p \in S(B)$  be a type that does not fork over A.

**J** is said to be an *independent sequence for* p *over* A if:

**1** For all  $j < \alpha$ ,  $\bar{a}_j \models p$ .

2 For all  $j < \alpha$ , tp $(\bar{a}_j/B \cup \{\bar{a}_{j'} \mid j' < j\})$  does not fork over A.

J is said to be a Morley sequence for p over A if:

**1** J is an independent sequence for p over A.

**2 J** is indiscernible over B.

If p does not fork over A, we can build an independent sequence J := ⟨ā<sub>j</sub> | j < α⟩ for p by repeated use of the extension property.

- If p does not fork over A, we can build an independent sequence J := (ā<sub>j</sub> | j < α) for p by repeated use of the extension property.</p>
- If T is stable and α ≥ (2<sup>|T|</sup>)<sup>+</sup>, we can then find a subsequence of J which is indiscernible, and hence Morley.

- If p does not fork over A, we can build an independent sequence J := (ā<sub>j</sub> | j < α) for p by repeated use of the extension property.</p>
- If *T* is stable and *α* ≥ (2<sup>|*T*|</sup>)<sup>+</sup>, we can then find a subsequence of J which is indiscernible, and hence Morley.
- If T is unstable, there need not be an indiscernible subsequence. But we can still build indiscernibles "on the side":

#### Fact (The indiscernible extraction theorem)

Let *B* be a set. Let  $\mu := \beth_{(2^{|\mathcal{T}|+|B|})^+}$ , and let  $\langle \bar{a}_j \mid j < \mu \rangle$  be a sequence of finite tuples. Then there exists a sequence  $\langle \bar{b}_i \mid i < \omega \rangle$ , indiscernible over *B* such that: For any  $i_0 < \ldots < i_{n-1} < \omega$ , there exists  $j_0 < \ldots < j_{n-1} < \mu$  so that  $\operatorname{tp}(\bar{b}_{i_0} \ldots \bar{b}_{i_{n-1}}/B) = \operatorname{tp}(\bar{a}_{j_0} \ldots \bar{a}_{j_{n-1}}/B)$ .

### Fact (The indiscernible extraction theorem)

Let *B* be a set. Let  $\mu := \beth_{(2^{|\mathcal{T}|+|B|})^+}$ , and let  $\langle \bar{a}_j \mid j < \mu \rangle$  be a sequence of finite tuples. Then there exists a sequence  $\langle \bar{b}_i \mid i < \omega \rangle$ , indiscernible over *B* such that: For any  $i_0 < \ldots < i_{n-1} < \omega$ , there exists  $j_0 < \ldots < j_{n-1} < \mu$  so that  $\operatorname{tp}(\bar{b}_{i_0} \ldots \bar{b}_{i_{n-1}}/B) = \operatorname{tp}(\bar{a}_{j_0} \ldots \bar{a}_{j_{n-1}}/B)$ .

Using invariance and finite character of forking, it is easy to argue that if  $\langle \bar{a}_j \mid j < \mu \rangle$  is independent, then  $\langle \bar{b}_i \mid i < \omega \rangle$  also is independent (and so is Morley).

 $\beth_{\left(2^{|\mathcal{T}|+|B|}\right)^+} \text{ is too much, so we will use the following weak version that works for } \omega:$ 

#### Fact (The weak indiscernible extraction theorem)

Let B be a set. Let  $\langle \bar{a}_j | j < \omega \rangle$  be a sequence of finite tuples. Then there exists a sequence  $\langle \bar{b}_i | i < \omega \rangle$ , indiscernible over B such that:

For any  $i_0 < \ldots < i_{n-1} < \omega$ , for all finite  $q \subseteq \operatorname{tp}(\overline{b}_{i_0} \ldots \overline{b}_{i_{n-1}}/B)$ , there exists  $j_0 < \ldots < j_{n-1} < \omega$  so that  $\overline{a}_{j_0} \ldots \overline{a}_{j_{n-1}} \models q$ .

 $\beth_{\left(2^{|\mathcal{T}|+|B|}\right)^+} \text{ is too much, so we will use the following weak version that works for } \omega:$ 

#### Fact (The weak indiscernible extraction theorem)

Let B be a set. Let  $\langle \bar{a}_j | j < \omega \rangle$  be a sequence of finite tuples. Then there exists a sequence  $\langle \bar{b}_i | i < \omega \rangle$ , indiscernible over B such that:

For any  $i_0 < \ldots < i_{n-1} < \omega$ , for all finite  $q \subseteq \operatorname{tp}(\overline{b}_{i_0} \ldots \overline{b}_{i_{n-1}}/B)$ , there exists  $j_0 < \ldots < j_{n-1} < \omega$  so that  $\overline{a}_{j_0} \ldots \overline{a}_{j_{n-1}} \models q$ .

*However* this does *not* give us enough invariance to deduce that independence of  $\langle \bar{a}_i | j < \omega \rangle$  implies independence of  $\langle \bar{b}_i | i < \omega \rangle$ .

To get the desired conclusion, we will assume the following local definability property of forking:

### Definition

Forking is said to have *dual finite character (DFC)* if whenever  $tp(\bar{c}/A\bar{b})$  forks over A, there is a formula  $\phi(\bar{x}, \bar{y})$  over A such that:

• 
$$\models \phi[\bar{c}, \bar{b}]$$
, and:  
•  $\models \phi[\bar{c}, \bar{b}']$  implies tp $(\bar{c}/A\bar{b}')$  forks over  $A$ .

### Theorem

Assume forking has DFC. Let  $A \subseteq B$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then there is a Morley sequence  $\langle \bar{b}_i | i < \omega \rangle$  for p over A.

**1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for *p* over *A*.

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:
  - **1** For all  $i < \omega$ ,  $\overline{b}_i$  realizes p: if not, take a formula witnessing it and deduce that some  $\overline{a}_i$  does not realize p.

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:
  - **1** For all  $i < \omega$ ,  $\overline{b}_i$  realizes p: if not, take a formula witnessing it and deduce that some  $\overline{a}_i$  does not realize p.
  - 2 For all  $i < \omega$ , tp $(\overline{b}_i/B \cup {\overline{b}_{i'} | i' < i})$  does not fork over A:

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:
  - **1** For all  $i < \omega$ ,  $\overline{b}_i$  realizes p: if not, take a formula witnessing it and deduce that some  $\overline{a}_i$  does not realize p.
  - 2 For all  $i < \omega$ , tp $(\bar{b}_i/B \cup \{\bar{b}_{i'} \mid i' < i\})$  does not fork over A:

**1** If not, let  $\phi(\bar{x}, \bar{y}_0 \dots \bar{y}_{n-1})$  be as given by DFC.

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:
  - **1** For all  $i < \omega$ ,  $\overline{b}_i$  realizes p: if not, take a formula witnessing it and deduce that some  $\overline{a}_i$  does not realize p.
  - 2 For all  $i < \omega$ , tp $(\bar{b}_i/B \cup \{\bar{b}_{i'} \mid i' < i\})$  does not fork over A:
    - **1** If not, let  $\phi(\bar{x}, \bar{y}_0 \dots \bar{y}_{n-1})$  be as given by DFC.
    - **2** Find  $\bar{a}_j$ ,  $\bar{a}_{j_0} \dots \bar{a}_{j_{n-1}}$  realizing  $\phi$ .

- **1** Build an independent sequence  $\langle \bar{a}_j | j < \omega \rangle$  for p over A.
- 2 Use the weak indiscernible extraction theorem to obtain  $\langle \bar{b}_i | i < \omega \rangle$  indiscernible over *B* such that any formula realized by the  $\bar{b}_i$ s is realized by some of the  $\bar{a}_j$ s. This is independent for *p* over *A* because:
  - **1** For all  $i < \omega$ ,  $\overline{b}_i$  realizes p: if not, take a formula witnessing it and deduce that some  $\overline{a}_i$  does not realize p.
  - 2 For all  $i < \omega$ , tp $(\bar{b}_i/B \cup \{\bar{b}_{i'} \mid i' < i\})$  does not fork over A:
    - **1** If not, let  $\phi(\bar{x}, \bar{y}_0 \dots \bar{y}_{n-1})$  be as given by DFC.
    - **2** Find  $\bar{a}_j$ ,  $\bar{a}_{j_0} \dots \bar{a}_{j_{n-1}}$  realizing  $\phi$ .
    - 3 Use the definition of  $\phi$  together with  $\operatorname{tp}(\overline{a}_j/B) = p = \operatorname{tp}(\overline{b}_i/B)$  to see that  $\operatorname{tp}(\overline{a}_j/B \cup \{\overline{a}_{j'} \mid j' < j\})$  forks over A, contradiction.

# When does forking have DFC?

#### Definition

Forking has the symmetry property when  $tp(\bar{a}/A\bar{b})$  does not fork over A if and only if  $tp(\bar{b}/A\bar{a})$  does not fork over A.

#### Proposition

If forking has the symmetry property, then it has DFC.

Sebastien Vasey

Indiscernible extraction and Morley sequences

## When does forking have DFC?

#### Definition

Forking has the symmetry property when  $tp(\bar{a}/A\bar{b})$  does not fork over A if and only if  $tp(\bar{b}/A\bar{a})$  does not fork over A.

#### Proposition

If forking has the symmetry property, then it has DFC.

### Fact (Kim)

T is simple if and only if forking has the symmetry property.

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

## When does forking have DFC?

#### Definition

Forking has the symmetry property when  $tp(\bar{a}/A\bar{b})$  does not fork over A if and only if  $tp(\bar{b}/A\bar{a})$  does not fork over A.

#### Proposition

If forking has the symmetry property, then it has DFC.

### Fact (Kim)

T is simple if and only if forking has the symmetry property.

There is no circularity: methods of Adler can be used to prove this in ZFC minus replacement without relying on existence of Morley sequences.

Sebastien Vasey

#### Corollary

Assume T is simple. Let  $A \subseteq B$  be sets. Let  $p \in S(B)$  be a type that does not fork over A. Then there is a Morley sequence  $\langle \bar{b}_i | i < \omega \rangle$  for p over A.

**Proof:** By Kim's theorem, forking has symmetry, and hence by the previous proposition has DFC. Apply the previous result.

## Is DFC weaker than simplicity?

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

# Is DFC weaker than simplicity?

No (Itay Kaplan, personal communication).

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

No (Itay Kaplan, personal communication). The key is that symmetry fails *very badly* in nonsimple theories:

### Fact (Chernikov)

Assume T is not simple. Then there is a model M and tuples  $\bar{b}, \bar{c}$  such that  $tp(\bar{b}/M\bar{c})$  is finitely satisfiable in M, but  $tp(\bar{c}/M\bar{b})$  forks over M.

No (Itay Kaplan, personal communication). The key is that symmetry fails *very badly* in nonsimple theories:

### Fact (Chernikov)

Assume T is not simple. Then there is a model M and tuples  $\bar{b}, \bar{c}$  such that  $tp(\bar{b}/M\bar{c})$  is finitely satisfiable in M, but  $tp(\bar{c}/M\bar{b})$  forks over M.

#### Corollary

T is simple if and only if forking has DFC.

Sebastien Vasey

Carnegie Mellon University

Indiscernible extraction and Morley sequences

**1** By finite satisfiability, there is  $\bar{b}' \in M$  such that  $\models \phi[\bar{c}, \bar{b}']$ .

- **1** By finite satisfiability, there is  $\bar{b}' \in M$  such that  $\models \phi[\bar{c}, \bar{b}']$ .
- 2 So  $tp(\bar{c}/M\bar{b}') = tp(\bar{c}/M)$  is finitely satisfiable in M and hence does not fork over M.

- **1** By finite satisfiability, there is  $\bar{b}' \in M$  such that  $\models \phi[\bar{c}, \bar{b}']$ .
- 2 So  $tp(\bar{c}/M\bar{b}') = tp(\bar{c}/M)$  is finitely satisfiable in M and hence does not fork over M.
- **3** So  $\phi$  cannot witness DFC.

# Thank you!

For further reference, see:

Sebastien Vasey, *Indiscernible extraction and Morley sequences*, Accepted (June 9, 2014), Notre Dame Journal of Formal Logic.

- A preprint can be accessed from my webpage: http://math.cmu.edu/~svasey/
- For a direct link, you can take a picture of the QR code below:



Sebastien Vasey