SOLVING LINEAR DIFFERENCE EQUATIONS

A linear difference equation is an equation of the form:

$$
\alpha_{k} x_{n+k}+\alpha_{k-1} x_{n+k-1}+\ldots+\alpha_{0} x_{n}=r_{n}
$$

Where n ranges over all natural numbers, $\alpha_{0}, \ldots, \alpha_{k}$ are complex numbers (in this course real numbers), and r_{n} is a fixed function of n (in this course usually pretty simple, like a constant or a polynomial). We say that the equation has order k if $\alpha_{k} \neq 0$. A solution of the difference equation is a sequence $\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ satisfying the equation for all $n \in \mathbb{N}$. Since a difference equation usually has many solutions, we may impose boundary conditions of the form $x_{0}=\beta_{0}, \ldots, x_{k-1}=\beta_{k-1}$. We call a linear difference equation homogeneous if $r_{n}=0$.

Example. Consider the homogeneous linear difference equation $x_{n+1}+2 x_{n}=0$. Rearranging, we get that $x_{n+1}=-2 x_{n}$. Since (if $n \geq 1$) $x_{n}=-2 x_{n-1}$, it is easy to guess that $x_{n}=(-2)^{n} A$ is a solution, for any real constant A. If we specify the boundary condition that $x_{0}=1$, we get that $A=1$, so the solution is $x_{n}=(-2)^{n}$. It can be shown that this is the unique solution.

Remark. A linear difference equation can be seen as an approximation to a linear differential equation. For example, the linear differential equation $x^{\prime}=0$ is the same as $0=\lim _{h \rightarrow 0} \frac{x(t+h)-x(t)}{h}$. Taking $h \neq 0$ fixed and small, this equation is approximately the same as $0=x(t+h)-x(t)$. Now let y_{n} be $x(t+n h)$. Then the last equation is $0=y_{n+1}-y_{n}$, a linear difference equation.

Solving homogeneous linear difference equation. We want to solve $\alpha_{k} x_{n+k}+$ $\alpha_{k-1} x_{n+k-1}+\ldots+\alpha_{0} x_{n}=0$. Note that linear combinations of solutions are also solutions. Thus the solutions form a vector space. One can show that this space will have dimension k, where k is the order of the equation. To find the solutions, we look at the characteristic polynomial of the equation, defined by $\alpha_{k} \theta^{k}+\alpha_{k-1} \theta^{k-1}+$ $\ldots+\alpha_{0}$. If θ is a root of the characteristic polynomial, then one can check that $x_{n}=\theta^{n}$ will be a solution to the equation. More generally, if θ has multiplicity m, then one can check that $n^{\ell} \theta^{n}$ will be solutions for any $\ell \leq m$ (to see this, think about what you get when taking the derivative of the characteristic polynomial ℓ times).

Assuming that all solutions have multiplicity one, a general solution will have the form $A_{1} \theta_{1}^{n}+A_{2} \theta_{2}^{n}+\ldots+A_{k} \theta_{k}^{n}$, where A_{1}, \ldots, A_{k} are complex numbers. If for example $\theta_{1}=\theta_{2}$ has multiplicity 2 , we would also need a solution of the form $B n \theta_{1}^{n}$. To obtain a single solution from the general solution, one would then need k boundary conditions.

Example. Consider the homogeneous linear difference equation $-x_{n+2}+x_{n+1}+$ $3 x_{n}=0$. Set $x=\theta_{n}$ (θ nonzero) and solve for θ. We get $-\theta^{n+2}+\theta^{n+1}+3 \theta^{n}=0$. Dividing out by θ^{n}, we get $-\theta^{2}+\theta+3=0$. This equation has solutions $\theta=\frac{1 \pm \sqrt{13}}{2}$. Thus the general solution of the homogeneous linear difference equation is of the form $A_{1} \theta_{1}^{n}+A_{2} \theta_{2}^{n}$, where $\theta_{1}=\frac{1+\sqrt{13}}{2}, \theta_{2}=\frac{1-\sqrt{13}}{2}$. Under the initial conditions
$x_{0}=0$ and $x_{1}=1$, we can solve the equations $A_{1}+A_{2}=0$ and $A_{1} \theta_{1}+A_{2} \theta_{2}=1$ to find A_{1} and A_{2}.

Example. Consider the homogeneous linear difference equation $-x_{n+2}+2 x_{n+1}-$ $x_{n}=0$. The characteristic polynomial $-\theta^{2}+2 \theta-1$ has the single root $\theta=1$ of multiplicity 2. Thus the general solution is of the form $x_{n}=A_{1}+A_{2} n$.

Solving linear difference equation. Consider the general case $\alpha_{k} x_{n+k} \alpha_{k-1} x_{n+k-1}+$ $\ldots+\alpha_{0} x_{n}=r_{n}$. Any solution will be of the form $x_{n}=y_{n}+s_{n}$, where $\left\langle y_{n}: n \in \mathbb{N}\right\rangle$ is a solution to the homogeneous version of the equation: $\alpha_{k} x_{n+k} \alpha_{k-1} x_{n+k-1}+$ $\ldots+\alpha_{0} x_{n}=0$, and s_{n} is any solution to the original equation. In words, a solution to a linear difference equation is given by summing the solution to the homogeneous case to a particular solution. There is no general method to obtain the particular solution, one must guess it, but in simple cases it is not difficult.

Example. Consider the linear difference equation $-x_{n+2}+x_{n+1}+3 x_{n}=n$. We have found the homogeneous solutions y_{n} in the previous example. Let us now find a particular solution. Looking at the form of the right hand side, it seems plausible that the particular solution would look like $x_{n}=\alpha n+\beta$, where α and β are fixed complex numbers. Let us plug this into the equation. We get $n=$ $-\alpha(n+2)-\beta+\alpha(n+1)+\beta+3 \alpha n+3 \beta=\alpha(3 n-1)+3 \beta=3 \alpha n+3 \beta-\alpha$. Solving, we get $\alpha=\frac{1}{3}, \beta=\frac{1}{9}$. Thus the general solution ${ }^{1}$ is given by $x_{n}=A_{1} \theta_{1}^{n}+A_{2} \theta_{2}^{n}+\frac{n}{3}+\frac{1}{9}$.

[^0]
[^0]: ${ }^{1}$ One can check it is indeed the solution.

