
MATH 154 - PROBABILITY THEORY, SPRING 2018

ASSIGNMENT 6

Due Friday, March 9 at the beginning of class. Make sure to include your
full name and the list of your collaborators (if any) with your assignment. You
may discuss problems with others, but you may not keep a written record of your
discussions. Please refer to the syllabus for details.

With regards to answering these problems, imagine that you are writing an
answer to teach someone else in the class how to do the problem. In particular, you
must give a complete outline for how you arrived at your answer. It is not sufficient
to simply state a number or formula without providing the steps and reasoning that
you used to produce the answer.

(1) Prove that any σ-field is a semi-algebra.
(2) Let A be the set of all subintervals of Ω = [0, 1] (in the sense of the online

notes on building probability spaces). Show that A is a semi-algebra.
(3) Let A1 and A2 be semi-algebras on the sample spaces Ω1 and Ω2 respec-

tively. Show that {A1 × A2 | A1 ∈ A1, A2 ∈ A2} is a semi-algebra on the
sample space Ω1 × Ω2. Hint: first show it when A1 and A2 are σ-fields,
then expand the proof further.

(4) Let (Ω,F , P ) be a probability space. Let A ∈ F be such that P (A) > 0.
We define the subspace induced by A, a triple (Ω∗,F∗, P ∗), as follows:
• Ω∗ = A.
• F∗ = {B ∈ F | B ⊆ A}.
• P ∗ : F∗ → [0, 1] is P ∗(B) = P (B|A).
Intuitively, this is the subspace obtained when we restrict ourselves only

to the outcomes when the event A happens. Prove that (Ω∗,F∗, P ∗) is a
probability space. Note: This involves checking both that F∗ is a σ-field
and that P ∗ is a probability function.

(5) Let (Ω,F , P ) be a probability space. We call a set A ∈ F null if P (A) = 0.
In this problem, you will construct a σ-field F∗ and a probability function
P ∗ such that F ⊆ F∗ and F∗ contains all subsets of null events (they will
also have probability zero). The space (Ω,F∗, P ∗) is called the completion
of (Ω,F , P ), see 1.6 in Grimmett-Stirzaker.
(a) Let N := {A ⊆ Ω | A is contained inside a null set}. Show that N

contains the empty set, is closed under taking subsets, and is closed
under countable unions.

(b) For sets A and B, let A∆B denote the symmetric difference of A and
B. It is defined by A∆B = (A\B) ∪ (B\A). Let F∗ := {A ⊆ Ω |
A∆B ∈ N for some B ∈ F}. Prove that F ⊆ F∗ and F∗ is a σ-field.
Hint: First draw a picture to understand the definition.

(c) Let A ⊆ Ω and let B1, B2 ∈ F . Show that if A∆B1 ∈ N and A∆B2 ∈
N , then B1∆B2 ∈ N . Hint: First draw a picture to understand this.
Then write B` as (A ∩B`) ∪ (Ac ∩B`), for ` = 1, 2.
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(d) Define P ∗ : F∗ → [0, 1] by P ∗(A) = P (B) whenever B ∈ F is such
that A∆B ∈ N . Prove that P ∗ is well-defined (that is, we get the same
result regardless of the choice of B) and P ∗ extends P . Hint: first show
that if B1, B2 ∈ F are such that B1∆B2 ∈ N , then P (B1) = P (B2).
Then use the previous part.

Extra credit problems

(1) In this problem, you will construct a probability space modeling the exper-
iment of tossing infinitely-many fair coins1. Let N = {0, 1, 2, . . .} be the set
of natural numbers and let Ω be the set of all functions f : N→ {0, 1}. We
think of each such function as an infinite sequence of zeroes and ones. For
n a natural number, we let [n] := {m ∈ N | m < n}. Let S be the set of
all functions of the form f : [n] → {0, 1} (a finite sequence of zeroes and
ones), for some natural number n. For s ∈ S with domain [n], we say that
f ∈ Ω extends s if s(m) = f(m) for all m < n. Let As be the set of all
f ∈ Ω which extend s.
(a) Let A := {∅} ∪ {As | s ∈ S}. Show that A is a semi-algebra.
(b) Let P0 : A → [0, 1] be defined by P0(∅) = 0 and P0(As) = 1

2n , where n
is such that [n] is the domain of s. Explain why defining P0 this way
makes sense if we think of each function f ∈ Ω as giving the result of
tossing a coin infinitely-many times, with f(n) giving whether the nth
toss was head or tail.

(c) Show that P0 satisfies the hypotheses of the extension theorem. Hint:
for countable monotonicity, feel free to use any fact from topology that
you know. Here is a way to do it if you do not know any topology:
show that if As ⊆

⋃∞
i=1Asi , there must exist a natural number n such

that As ⊆
⋃n

i=1Asi . To do this, first reduce to the pairwise disjoint
case, then suppose not and define an infinite sequence f ∈ Ω which
extends s and such that for each n ∈ N there are infinitely-many i’s
with si extending the restriction of f to [n]. Prove that f /∈ As.

(2) Let A be the set of all subintervals of [0, 1], and let P0 : A → [0, 1] be
defined by P0([a, b]) = P0([a, b)) = P0((a, b]) = P0((a, b)) = b−a, for a ≤ b.
(a) Prove that P0 is finitely additive.
(b) Prove that if A1, A2, . . . are all open intervals and A is a closed interval

such that A ⊆
⋃∞

i=1Ai, then P0(A) ≤
∑∞

i=1 P0(Ai). Hint: you may
without proof use the Heine-Borel theorem: if the union of a collection
of open intervals contains a closed interval, then the union of some
finite subcollection of open intervals also contains this closed interval.

(c) Prove that if A1, A2 . . . are arbitrary intervals and A is an arbitrary
interval such that A ⊆

⋃∞
i=1Ai, then P0(A) ≤

∑∞
i=1 P0(Ai). Hint:

here is one way: grow each Ai to an open interval with ε2−i-more
elements padded to each end, then use the previous part.

1Another approach toward this: identify each real number with its sequence of digits in binary;
then Lebesgue measure is essentially the same as what we want to build.
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