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1. Introduction

The goal of these notes is to outline the proof of two fundamental theorems in
probability. The setup of both theorems is the same: we have an infinite sequence
X1, X2, . . . of independent and identically distributed random variables with finite
mean µ. We are interested in the behavior of their sum Sn :=

∑n
i=1Xi as n becomes

large. Using a frequentist interpretation of probability, one may expect that the
average Sn/n of the random variables would become closer and closer to µ. This
is indeed the case and the content of the law of large numbers (Theorem 4.4), the
first theorem which we aim to prove.

More ambitiously, one may ask what precisely the distribution of Sn is. The
answer is the content of the extraordinary central limit theorem (Theorem 4.5): if
the Xi’s have finite variance σ2, then as n becomes large, Sn approaches a normal
distribution with mean µn and variance nσ2 (we will of course have to make precise
what “approaches” exactly means).

2. Some terminology and notation

We have not defined what is meant by the mean of an arbitrary random variable
(not necessarily discrete or continuous). Thus in these notes, by a random variable
we mean a random variable that is either discrete or continuous (although one can
make sense of the statements in general, see section 5.6 of Grimmett-Stirzaker). By
a function, we mean a “reasonable” function that we can integrate (think “contin-
uous, except perhaps at countably-many points”).

We will also use the following bit of notation (5.6.A in Grimmett-Stirzaker):

Date: April 6, 2018.

1



2 SEBASTIEN VASEY

Notation 2.1. Let X be a (discrete or continuous) random variable with distri-
bution function F and let g : R→ C be a function. We write

∫
gdF or

∫
g(x)dF

for
∫∞
−∞ g(x)fX(x)dx if X is continuous or

∑
x g(x)fX(x) if X is discrete.

Note in particular that
∫
dF = 1.

We have allowed complex-valued functions above (see the appendix for a crash
course on complex numbers). We will also need to look at complex-valued random
variables:

Definition 2.2. A complex-valued random variable is a function Y : Ω → C such
that Re(Y ) and Im(Y ) are (real-valued) random variables.

We will always mention when we use complex-valued random variables. By
default, “random variable” will mean a real-valued random variable.

Definition 2.3. Let Y be a complex-valued random variable. We define E(Y ) by
E(Re(Y )) + iE(Im(Y )).

One can check that the usual properties of expectation (for example: linearity,
expectation of independent product is product of expectations) carry over to the
case of complex-valued random variables.

2.1. Continuity of integration. When can one invert limits and integration? We
will blackbox the following facts, whose proofs (in the continuous case) would need
a precise definition of integration1 (try to prove it for the discrete case!):

Fact 2.4 (Dominated convergence). Let X be a random variable with distribution
function F . Let f1, f2 . . . be a sequence of complex-valued functions which goes to
f pointwise (that is, fn(x) → f(x) for every x). If there exists a function g such
that |fn(x)| ≤ |g(x)| for all x and n and

∫
|g|dF <∞, then

∫
fndF goes to

∫
fdF .

Remark 2.5. A similar result also holds for limits of functions indexed by real
numbers. Namely, let X be a random variable with distribution function F . Let
ft, t ∈ R be complex-valued functions and fix a ∈ R. Assume that ft → f as
t → a. If there exists a function g such that |ft(x)| ≤ |g(x)| for all x and t and∫
|g|dF <∞, then

∫
ftdF goes to

∫
fdF as t→ a. To see this from Fact 2.4, check

that
∫
ftndF →

∫
fdF for every subsequence (tn) of real numbers going to a.

We deduce conditions under which one can invert the order of differentiatin and
integration.

Fact 2.6. Let X be a random variable with distribution function F . Suppose that
we are given f : R × R → C. Suppose that for all x ∈ R, d

dtf(t, x) exists (we will

abuse notation write f ′(t, x) for d
dtf(t, x)). If there exists g : R→ C such that for all

x, t ∈ R, |f ′(t, x)| ≤ |g(x)| and
∫
|g|dF <∞, then d

dt

∫
f(t, x)dF =

∫
d
dtf(t, x)dF .

Proof (optional). By definition of the derivative,

d

dt

∫
f(t, x)dF = lim

h→0

∫
f(t+ h, x)− f(t, x)

h
dF

1The definition one can take for the purpose of these notes is called the Lebesgue integral. This

is a generalization of the Riemann integral that one often studies in calculus classes. The latter
is not powerful enough to satisfy the facts below, because a limit of Riemann-integrable function

could fail to be Riemann-integrable (try to find an example!).
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It is enough to see that we can put the limit inside the integration sign. Fix x,
t, and h > 0. By the mean value theorem, there exists a point c = cx ∈ (t, t + h)

such that f ′(c, x) = f(t+h,x)−f(t,x)
h . Now, |f ′(c, x)| ≤ |g(x)| by assumption. Thus

| f(t+h,x)−f(t,x)h | ≤ |g(x)|, and so one can apply the dominated convergence theorem,
as desired. �

The following result is also very useful. It says that under mild conditions one can
invert the order of integration. We state it for integrals, and leave the corresponding
statement for sums to the reader.

Fact 2.7 (The Fubini-Tonelli theorem). Let f : R× R→ C. Assume that at least
one of the following conditions hold:

(1) f(x, y) ≥ 0 (so it is a real number) for all x and y.
(2)

∫∞
−∞

∫∞
−∞ |f(x, y)|dxdy <∞.

Then: ∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dydx

Remark 2.8. To compute the integral in the second condition, one can change
the order of integration, since the first condition holds for |f |.

Remark 2.9. Similar statements hold if the bounds are not −∞ and ∞, but say
a ≤ x ≤ b, c ≤ y ≤ d. One quick way to see this is to apply the result with the
infinite bounds to f · χ, where χ is the indicator function of the set [a, b] × [c, d]:
χ(x, y) is 1 if (x, y) ∈ [a, b]× [c, d] and 0 otherwise.

3. Chebyshev’s inequality

We first prove a special case of the law of large numbers using an important
inequality.

Theorem 3.1 (Chebyshev’s inequality). Let X be a random variable and let a > 0.

Then P (|X| ≥ a) ≤ E(X2)
a2 .

To see what Chebyshev’s inequality says, consider the special case when X has

mean zero and variance σ2. Then we have that P (|X| ≥ a) ≤ σ2

a2 . Thus X has
to concentrate around its mean, in a way that is bounded by the variance. For
example, setting a = kσ, we have that the probability that X is more than k
standard deviations away from the mean is bounded by 1

k2 . This is valid for any
random variable, regardless of its distribution!

Since Chebyshev’s inequality is very general, the bound it gives is often poor
compared to specific cases2. For example, assume that X ∼ N(0, 1). Then P (|X| ≥
k) = 2 1√

2π

∫∞
k
e−x

2/2dx. We estimate:

2√
2π

∫ ∞
k

e−x
2/2dx ≤

√
2√
π

∫ ∞
k

x

k
e−x

2/2dx =
2√
πk
e−k

2/2

which is much smaller than 1
k2 .

To prove Chebyshev’s inequality, we first prove Markov’s inequality:

2You will however show in your homework that the bound is sharp in general.
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Theorem 3.2 (Markov’s inequality). Let X be a nonnegative random variable and

let a > 0. Then P (X ≥ a) ≤ E(X)
a .

Proof. Let A be the event {X ≥ a}. Then X ≥ aIA (this uses that X is nonneg-
ative), so taking expectations on both sides, E(X) ≥ aP (X ≥ a), and the result
follows. �

Note that Markov’s inequality can be used even when X has infinite variance (in
which case Chebyshev cannot be used).

Proof of Chebyshev’s inequality. Let b := a2 and Y := X2 and apply Theorem 3.2

to Y and b. We get that P (X2 ≥ b) ≤ E(X2)
b . Taking square roots, we get that

P (|X| ≥
√
b) ≤ E(X2)

b , so P (|X| ≥ a) ≤ E(X2)
a2 , as desired. �

As a consequence of Chebyshev’s inequality, let X1, X2, . . . be a sequence of
independent and identically-distributed random variables with mean µ and variance
σ2. Let Sn :=

∑n
i=1Xi. We apply Chebyshev’s inequality to Tn := Sn

n − µ. We

obtain that P (|Tn| ≥ a) ≤ E(T 2
n)

a2 . Note that E(Sn) = nµ, hence E(Tn) = 0. Thus

E(T 2
n) = Var(Tn). Further, Var(Tn) = Var(Sn

n ) = nσ2

n2 = σ2

n , using that the Xi’s

are independent. We obtain that P (|Tn| ≥ a) ≤ σ2

a2n which goes to zero as n goes

to infinity. Thus Sn

n concentrates around µ as n goes to infinity. To make this into

a precise statement about the convergence of the random variable Sn

n , we need to
talk about what convergence should mean.

4. Convergence of random variables

There are several senses in which a sequence X1, X2, . . . of random variables can
converge to a random variable X (see Section 7.2 of Grimmett-Stirzaker for an
overview). In these notes, we will only use one definition:

Definition 4.1. Let X1, X2, . . . be a sequence of random variables with distribution
functions FX1

, FX2
, . . .. Let X be a random variable with distribution function FX .

We say that (Xn) converges to X in distribution, written Xn
D−→ X, if for every

x ∈ R such that P (X = x) = 0, we have that lim
n→∞

FXn(x) = F (x).

In other words, (Xn) converges toX in distribution if the sequence of distribution
(FXn

) converges pointwise to FX for each of the continuity points of FX . To see
why we do not require that lim

n→∞
FXn(x) = F (x) when P (X = x) 6= 0, consider the

following example: let Xn be the constantly 1
n random variable and let X be the

constantly zero random variable. We would like to say that Xn goes to X. We have
that FXn

(x) = 0 if x < 1/n and FXn
(x) = 1 if x ≥ 1/n, and FX(x) = 0 if x < 0

and FX(x) = 1 if x ≥ 0. Observe that lim
n→∞

FXn
(0) = 0, but FX(0) = 1. Still,

one can readily check that (Xn) converges to X in distribution, as P (X = 0) 6= 0.
Intuitively, it does not matter if FXn

(x) does not converge to FX(x) when x is a
discontinuity point: we will be able to recover what the random variable looks like
in that neighborhood by adding a small epsilon to x. In fact, you will prove the
following in your homework:

Exercise 4.2. Let X and Y be random variables3. Then:

3In fact, here we do not need that X and Y be either continuous or discrete.
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(1) There are at most countably-many points x such that P (X = x) > 0.
(2) If FX(x) = FY (x) except for countably-many points x, then FX = FY .

Hint: you may want to use the following two facts: a countable union of countable
sets is countable, and any non-empty open interval of reals is not countable.

Convergence in distribution has several of the properties one would expect from
a notion of convergence. You will explore this in your homework. For now, we
define some more notation:

Definition 4.3. Let X1, X2, . . . be a sequence of random variable and let µ and σ

be real numbers. We write Xn
D−→ µ if Xn

D−→ X, where X is the random variable

that is constantly µ. We write Xn
D−→ N(µ, σ2) if Xn

D−→ X, where X ∼ N(µ, σ2).

Using this notation, one can state the two limit theorems:

Theorem 4.4 (The law of large numbers). Let X1, X2, . . . be a sequence of inde-
pendent and identically distributed random variables with finite mean µ. Then:

X1 +X2 + . . .+Xn

n

D−→ µ

Theorem 4.5 (The central limit theorem). Let X1, X2, . . . be a sequence of in-
dependent and identically distributed random variables with finite mean µ and
variance σ2. Then:

X1 +X2 + . . .+Xn − nµ√
n

D−→ N(0, σ2)

Note that it is easy to check using linearity of expectation that the mean of
X1+X2+...Xn−nµ√

n
is zero, and that its variance is σ2 (using that the variance of a sum

of independent random variables is the sum of the variance, and that Var(aX) =
a2 Var(X)). From that point of view, the central limit theorem is at least plausible.

What cases of these theorems do we already know? We have already seen the law
of averages (2.2 of Grimmett-Stirzaker) which is basically the law of large numbers
when the Xi’s are Bernoulli random variables. A harder argument (using Stirling’s
approximation formula) would yield the central limit theorem for Bernoulli random
variables. We have also seen:

Exercise 4.6. If X and Y are independent N(µ, σ2), N(λ, τ2) random variables
respectively, then X + Y is N(µ + λ, σ2 + τ2) and for a real number a, aX is
N(aµ, a2σ2).

Thus if each X1, X2, . . . is a sequence of independent N(µ, σ2) random variables,

we have that X1 + . . .+Xn is N(nµ, nσ2), hence X1+...+Xn

n is N(µ, σ
2

n ), and so it
is easy to check that in distribution it will go to the constantly µ random variable.
Similarly, X1+...+Xn−nµ√

n
will be (exactly) N(µ, σ2), as in the conclusion of the

central limit theorem. Thus the central limit theorem holds for normal random
variables.

In the rest of this section, we prove a special case of the law of large numbers
using Chebyshev’s inequality. The additional assumption compared to Theorem
4.4 is that the variables have finite variance.



6 SEBASTIEN VASEY

Theorem 4.7 (The law of large numbers with finite variance). Let X1, X2, . . . be
a sequence of independent and identically distributed random variables with finite
mean µ and variance σ2. Then:

X1 +X2 + . . .+Xn

n

D−→ µ

Proof. We might as well assume that µ = 0. If not, replace Xi by Yi = Xi−µ. Let
Sn = X1 + . . . + Xn. By the argument at the end of Section 3, we have for each

a > 0 that P (|Sn/n| ≥ a) ≤ σ2

an . Let Fn be the distribution of Sn/n, and let F be
the distribution of the constantly µ random variable. To establish convergence in
distribution, we have to see that Fn(x) goes to F (x) whenever x 6= µ = 0. Assume
first that x < 0. Then F (x) = 0, and we have that Fn(x) = P (Sn/n ≤ x) ≤
P (|Sn/n| ≥ |x|) ≤ σ2

xn , which goes to zero as n goes to infinity. Similarly, if x > 0,
F (x) = 1 and Fn(x) = P (Sn/n ≤ x) = 1 − P (Sn/n > x) ≥ 1 − P (|Sn/n| ≥ x) ≥
1− σ2

xn which goes to 1 as n goes to infinity. �

5. Characteristic functions

Toward the proof of the general case of the law of large numbers and the central
limit theorem, we have to develop tools to deal with sums of random variables. For
certain discrete random variables, we saw the power of generating functions. Recall
that the generating function of a discrete random variables X taking values in N was
defined to be GX(s) = E(sX). We saw that generating functions of independent
sums are product of the separate generating functions. For possibly continuous
random variables it can be more convenient to work with the moment generating
function MX(t) = E(etX). There are some issues with convergence, however4, so
we prefer to work with:

Definition 5.1. The characteristic function of a random variable X is the function
φX : R→ C defined by φX(t) = E(eitX).

Remark 5.2. When X is a continuous random variable, φX(t) =
∫∞
−∞ fX(x)eitxdx.

This is often called the Fourier transform of fX .

Here, C is the set of complex numbers and i =
√
−1 (see the appendix for a crash

course on complex numbers). Adding an i to the exponential makes a significant
difference: |eit| = 1 for any real number t. Thus the expectation always exists. In
fact (see 5.7.3 in Grimmett-Stirzaker):

Lemma 5.3. Let X be a random variable and let φ be its characteristic function.

(1) φ(0) = 1 and |φ(t)| ≤ 1 for all t.
(2) φ is uniformly continuous on R.

Proof.

(1) φ(0) = E(e0) = E(1) = 1. Moreover:

|φ(t)| = |E(eist)| =
∣∣∣∣∫ eitxdFX

∣∣∣∣ ≤ ∫ |eitx|dFX =

∫
1dFX = 1

4For example, the moment generating function of even an exponential random variable will
not be defined everywhere.
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(2) Fix t and h. We have to show that |φ(t+ h)− φ(t)| goes to zero as h goes
to zero in a way that is independent from t. We compute:

|φ(t+ h)− φ(t)| = |E(ei(t+h)X − eitX)| = |E(eitX(eihX − 1))| ≤
∫
|eihx − 1|dFX

The right hand side does not depend on t and goes to zero as h goes to
zero. Indeed by the triangle inequality, |eihx − 1| ≤ |eihx|+ |1| = 2, so the
inside of the integral is bounded by the constant function 2, and eihx − 1
goes to zero as h goes to zero. By the dominated convergence theorem
(Fact 2.4),

∫
|eihx − 1|dFX also goes to zero.

�

The characteristic functions has the following two basic properties, which turn
out to be incredibly convenient: the characteristic function of an independent sum
is the product of the individual characteristic functions, and the characteristic func-
tion of the product of a random variable by a constant also has a nice form:

Theorem 5.4.

(1) Let X and Y be independent random variables. Then φX+Y = φXφY .
(2) Let X be a random variable and let a be a real number. Then φaX(t) =

φX(at).

Proof.

(1) φX+Y (t) = E(eit(X+Y )) = E(eitXeitY ) = φX(t)φY (t), since X and Y are in-
dependent, and hence any function of X is also independent of any function
of Y (4.2.3 in Grimmett-Stirzaker).

(2) Immediate.

�

Next, we investigate the meaning of derivatives of the characteristic function.

Lemma 5.5. Let k be a natural number, let X be a random variable and let φ be
its characteristic function. If E(|X|k) <∞, then φ(k)(0) = ikE(Xk).

Proof. Let F := FX . We prove by induction on k that φ(k)(t) =
∫
ikxkeitxdF .

From this, it follows that φ(k)(0) =
∫
ikxkdF = ikE(Xk), as desired.

When k = 0, the result is immediate. Assume now that k = n + 1. We know
by the induction hypothesis that φ(n)(t) =

∫
inxneitxdF . We want to compute the

derivative of φ(n). We have to check that we can differentiate inside the integral
sign. By Fact 2.6, we have to see that d

dt i
nxneitx = in+1xn+1eitx is uniformly

bounded by an integrable function of x. Indeed, |in+1xn+1eitx| = |xn+1|, and∫
|xn+1|dF = E(|X|n+1) <∞ by assumption (since E(|X|k) <∞, also E(|X|m) <
∞ for any m ≤ k; this is an exercise in homework 10). Thus we obtain that
φ(k)(t) =

∫
ikxkeitxdF , as desired. �

It is time to give some examples of characteristic functions.

Example 5.6.

(1) The characteristic function of the constant random variable X = a is
φX(t) = eiat.

(2) If X ∼ Bern(p), then φX(t) = peit + 1− p.
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(3) If X ∼ Bin(n, p), then X is a sum of n independent Bern(p) random vari-
ables, so by Theorem 5.4, φX(t) = (peit + (1− p))n.

(4) If X ∼ N(µ, σ2), first set Y = X−µ
σ . We have that X = σY + µ and

Y ∼ N(0, 1). By Theorem 5.4 and using the characteristic function of a
constant computed above, φX(t) = φY (σt)eiµt. It remains to compute φY .

Expanding the definitions, we have that φY (t) = 1√
2π

∫∞
−∞ eitx−x

2/2dx. To

evaluate this integral, we use the following trick. As in the proof of Lemma
5.5, we can differentiate under the integral sign to obtain:

φ′Y (t) =
1√
2π

∫ ∞
−∞

ixeitx−x
2/2dx =

1√
2π

∫ ∞
−∞

ieitxxe−x
2/2dx

Integrating by parts, we obtain:

φ′Y (t) =
1√
2π

(
−e−x

2/2ieitx
∣∣∣x=+∞

x=−∞
−
∫ ∞
−∞

teitxe−x
2/2

)
= −tφY (t)

To solve this differential equation, observe that d
dt log(φY (t)) = φ′(t)

φ(t) =

−t, hence integrating both sides, log(φY (t)) = −t2
2 + C, for a constant C.

We also know that φY (0) = 1, so log(φY (0)) = 0, hence C = 0. Thus

log(φY (t)) = −t2
2 , so φY (t) = e−t

2/2. This shows that in some sense the
density function of a normal distribution is an eigenfunction for the Fourier
transform and helps justify why the central limit theorem is true.

Just like for generating functions, the characteristic function of a random variable
determines the distribution of the random variable. This is a fact from analysis
which is not easy to prove: if φX is absolutely integrable5 (i.e.

∫∞
−∞ |φ(t)|dt <∞),

then it turns out that X is a continuous random variable and we have the Fourier
inversion formula:

fX(x) =
1

2π

∫ ∞
−∞

e−itxφX(t)dt

This is still not easy to prove. In general, the integral on the right hand side
may not converge. For example, if X is a constantly a “random” variable, then
we have seen that φX(t) = eiat, so we end up having to compute an integral
of the form

∫∞
−∞ eit(x−a)dt =

∫∞
−∞ cos(t(x − a))dt + i

∫∞
−∞ sin(t(x − a))dx, which

does not converge. One way out of these difficulties is to slightly perturb what is
inside the integral so that it does end up converging, and to approximate discrete
random variables by continuous ones (for example the constantly a random variable
can be approximated by a continuous random variable with a density function
which strongly concentrates around a). Another way is to use improper integrals,

interpreting
∫∞
−∞ by lim

T→∞

∫ T
−T . We obtain statements such as:

Fact 5.7. Let X be a random variable and let a < b be such that P (X = a) =
P (X = b) = 0. Then:

5This may not happen, for example if X is an exponential random variable with parameter λ,
it turns out that the characteristic function is λ

λ−it , which is not absolutely integrable.
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P (a ≤ X ≤ b) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φX(t)dt

The proof of Fact 5.7, while not out of reach, is a long and technical calculation
that has little to do with probability (a long part of the proof revolves around

computing the integral of sin(t)
t ), so we skip it and take Fact 5.7 as a black box. If

you are interested, check out section 11.1 of Rosenthal’s book (the full reference is
in the syllabus).

As in the definition of convergence in distribution, it turns out that the condition
that P (X = a) = P (X = b) = 0 does not matter too much: if this fails one can
slightly change a and b so that the condition holds. Thus Fact 5.7 allows one to
recover the distribution from the characteristic function:

Theorem 5.8 (Characteristic functions determine the distribution). Let X and Y
be random variables. If φX = φY , then FX = FY .

Proof. Let A be the set of real numbers x such that P (X = x) > 0 or P (Y = x) > 0.
By Exercise 4.2, A is the union of two countable sets, hence countable. Fix x /∈ A
and fix ε > 0. We show that |FX(x) − FY (x)| < ε. Since ε is arbitrary, this will
show that FX(x) = FY (x) and hence by Exercise 4.2 that FX = FY . Since x /∈ A,
P (X = x) = 0. Now, we know that lim

y→−∞
F (y) = 0 for any distribution F , so

pick a small-enough such that FX(a) and FY (a) are both strictly less than ε
2 . The

interval (−∞, a) is uncountable, hence there must exist a′ ∈ (−∞, a) such that
a′ /∈ A. By Fact 5.7, FX(x) − FX(a′) = P (a′ ≤ X ≤ x) = P (a′ ≤ Y ≤ x) =
FY (x) − FY (a′). Thus FX(x) − FY (x) = FX(a′) − FY (a′), and by the triangle
inequality, |FX(a′)− FY (a′)| ≤ |FX(a′)|+ |FY (a′)| < ε

2 + ε
2 = ε, as desired. �

Another powerful fact that we will need is:

Fact 5.9 (The continuity theorem). Let X1, X2, . . . be a sequence of random vari-
ables and let X be a random variable. The following are equivalent:

(1) Xn
D−→ X (recall Definition 4.1).

(2) φXn
(t)→ φX(t) for all t ∈ R.

Again, we will assume this fact as a black box (see Section 11.1 of Rosen-
thal’s book for the proof). The idea is that passing to the characteristic func-
tion “smoothes out” the distribution (for example, the characteristic function is
uniformly continuous even though the distribution may not even be continuous),
hence convergence in distribution is just the same as pointwise convergence of the
characteristic functions.

6. Proofs of the two limit theorems

We are almost ready to prove the limit theorems. We recall one more fact from
analysis6:

6This is usually stated for real-valued functions. However the same statement holds for
complex-valued functions: one can simply apply real-valued Taylor’s theorem to the real and

imaginary parts separately.
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Fact 6.1 (Taylor’s theorem). Let f : R → C be a function which is differentiable

n times at zero. Then f(x) =
(∑n

k=0
f(k)(0)
k! xk

)
+ h(x), for some function h where

lim
x→0

h(x)
xk = 0 (intuitively, h is much smaller than xk).

Let us now prove the law of large numbers:

Proof of the law of large numbers (Theorem 4.4). Let Sn := X1 +X2 + . . . Xn. We

want to show that Sn

n

D−→ µ. For this we will pass to characteristic functions
and use the continuity theorem. Let φ be the characteristic function of each Xi.
We have that the characteristic function of Sn is φSn

(t) = (φ(t))
n
, and hence the

characteristic function of Sn

n is φn(t) := (φ(t/n))
n

(Theorem 5.4). On the other

hand, the characteristic function of the constantly µ random variable is φµ(t) = eitµ.
By the continuity theorem, it suffices to see that φn(t)→ φµ(t) for each real number
t. By Taylor’s theorem, we can write φ(t/n) = φ(0) + φ′(0)(t/n) + h(t/n), where
h(t/n)
t/n goes to zero as n goes to infinity. Now φ(0) = 1 and φ′(0) = iµ (Lemma 5.5).

Thus (φ(t/n))
n

=
(
1 + iµ tn + h(t/n)

)n
. As n goes to infinity, this goes to eitµ, as

desired. �

Proof of the central limit theorem (Theorem 4.5). The method of proof is similar
to the proof of the law of large numbers. First, normalize by writing Yi := Xi − µ.
Let Sn := Y1 + Y2 + . . . + Yn = X1 + . . . + Xn − nµ. We want to show that
Sn√
n

D−→ N(0, σ2). Let φ be the characteristic function of the Yi’s and let φn be the

characteristic function of Sn√
n

. By Theorem 5.4, φn(t) = φ(t/
√
n)n.

Again, we consider the Taylor expansion of φn around zero. φn(t) = φ(0) +

φ′(0)t + φ′′(0) t
2

2 + h(t), where lim
t→0

h(t)
t2 = 0. We have that that φ(0) = 1, and

φ′(0) = iE(Y1) = 0 (Lemma 5.5). By Lemma 5.5 again, φ′′(0) = −E(Y 2
1 ) = −σ2.

So we obtain:

φn(t/
√
n) = 1− σ2 t

2

2n
+ h(t/n)

So φn(t/
√
n)n =

(
1− σ2t2

2n + h(t/n)
)n

. Similarly to the proof of the law of large

numbers, this goes to e−σ
2t2/2 as n → ∞. This is the characteristic function of a

N(0, σ2) random variable (Example 5.6(4)), so by the continuity theorem, we are
done. �

Appendix A. A crash course on complex numbers

A complex number is a pair (a, b) of real numbers. Let C be the set of complex
numbers. We define the following operations on complex numbers:

• (a, b) + (c, d) = (a+ b, c+ d).
• (a, b) · (c, d) = (ac− bd, ad+ bc).

We let i be the complex number (0, 1) and identify each real number a with the
pair (a, 0). Then (a, b) can be written a + b · i, or just a + bi. We will adopt this
notation throughout.

This is the formal definition, but the idea is that we think of i as a number
satisfying the identity i2 = −1. That is, i is the square root of −1. Then a complex
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number is just a number of the form a + bi with a, b real numbers. Addition and
multiplication of complex numbers is defined as expected.

Each complex number z = a + bi has a real part, Re(z) = a and an imaginary
part, Im(z) = b. One can think of complex numbers as points in the plane: the x-
coordinate is their real part and the y-coordinate their imaginary part. The absolute
value (or modulus) of a complex number z = a + bi is then its distance from the

origin |z| :=
√
a2 + b2. We have the triangle inequality : |z1 + z2| ≤ |z1| + |z2| for

all complex numbers z1 and z2. It is also easy to check that |z1z2| = |z1||z2| for all
complex numbers z1 and z2.

We define concepts such as limits of sequences of complex numbers and integrals
of functions f : R → C linearly. In details, if z1, z2, . . . is a sequence of complex
numbers, we let lim

n→∞
zn be the complex number z (if it exists) such that Re(z) =

lim
n→∞

Re(zn) and Im(z) = lim
n→∞

Im(zn). Similarly, if f : R→ C, we let
∫ b
a
f(x)dx be∫ b

a
Re(f(x))dx+i

∫ b
a

Im(f(x))dx (defining what is meant by the integral of a function
f whose domain is C is a different story that we will not get into). The following
important property (which follows from the triangle inequality) is frequently useful:∣∣∣∣∣

∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx

We can define ez, for a complex number z by
∑∞
n=0

zn

n! . One can prove (using the
root test) that this converges absolutely everywhere. Expanding everything into a
Taylor series, one can then show that the following important identity holds (called
Euler’s formula). For any real number t:

eit = cos(t) + i sin(t)

Graphically, a complex number z = a + bi with |z| = 1 is determined by the
angle t between (a, b) and the x-axis. We have that a = cos(t) and b = sin(t).
Euler’s formula then says that eit = a+ bi. Note that this means in particular that
|eit| = 1 for any real number t. As a cute special case of Euler’s formula, we have
that eiπ + 1 = 0 (sometimes called Euler’s identity).


