## NOTES ON THE "MAD SECRETARY"

A secretary puts $n$ letters randomly in $n$ labelled enveloppe. What is the probability that exactly $r$ letters are put in the correct enveloppe? This problem is considered on p. 56 of Grimmett-Stirzaker, but we give a slightly different approach using the inclusion-exclusion formula.

Mathematically, we want the probability that a random permutation of $\{1, \ldots, n\}$ fixes exactly $r$-many elements. Let us call this probability $p_{r, n}$. We assume of course that each permutation is equally likely.

First, let $A_{i}$ be the event that the number $i$ is fixed (i.e. the letter $i$ ends up in the right enveloppe). For $i_{1}<i_{2}<\ldots<i_{r} \leq n$, we have that:

$$
P\left(A_{i_{1}}, \ldots, A_{i_{r}}\right)=P\left(A_{1}, \ldots, A_{r}\right)=\frac{(n-r)!}{n!}
$$

This is because the total number of permutations is $n$ !, and the number of permutations that fix the numbers 1 up to $r$ is the number of permutations of the numbers $\{r+1, \ldots, n\}$, and there are $n-r$ such numbers.

Second, observe that for a fixed $S \subseteq\{1, \ldots, n\}$ of size $r$, the probability that exactly the numbers in $S$ are fixed by a random permutation is $P\left(\bigcap_{i \in S} A_{i}\right) p_{0, n-r}=$ $P\left(A_{1}, \ldots, A_{r}\right) p_{0, n-r}$. Now summing over all $S$ of size $r$, we obtain that

$$
p_{r, n}=\binom{n}{r} \frac{(n-r)!}{n!} p_{0, n-r}=\frac{p_{0, n-r}}{r!}
$$

Let us now compute $p_{0, n}$. This is $1-P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)$. By the inclusionexclusion formula ((2) on p. 56 of Grimmett-Stirzaker), we have that $P\left(A_{1} \cup A_{2} \cup\right.$ $\left.\ldots \cup A_{n}\right)=\sum_{\emptyset \neq S \subseteq\{1, \ldots, n\}}(-1)^{|S|+1} P\left(\bigcap_{i \in S} A_{i}\right)$. Since $P\left(\bigcap_{i \in S} A_{i}\right)$ depends only on $|S|$, we obtain the symmetric version of the inclusion-exclusion formula:

$$
P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=\sum_{k=1}^{n}(-1)^{k+1}\binom{n}{k} P\left(A_{1}, \ldots, A_{k}\right)
$$

Putting everything together, we get that $p_{0, n}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$. Thus as $n \rightarrow \infty$, $p_{0, n} \rightarrow e^{-1}$.

