STIRLING’S FORMULA

Stirling’s formula says that for a natural number n, n! is approximately equal to
ne~"/2mn, in the sense that their ratio tends to 1:

Theorem (Stirling’s formula).
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We give a short proof using the central limit theorem and the theory of charac-
teristic functions. This is based on Example 5.9.6 in Grimmett-Stirzaker. The idea
is to study what happens if we apply the central limit theorem to a sequence of
exponential random variables. We will use the following result (a proof is sketched
in the extra credit assignment).

Fact (Fourier inversion formula). Let X be a random variable and let ¢ be its char-
acteristic function. If [*_|¢(t)|dt < oo, then X is a continuous random variable
and its density function is given by:
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Proof of Stirling’s formula. Let X1, X5, ... be a sequence of independent exponen-
tial random variable with parameter A = 1. Let S, := X;+...+ X,,. By a problem
in assignment 7, S, is a Gamma random variable with parameters 1 and n. That
is, fs, (z) = F(ln) 2" Le™® for x > 0. Recall that I'(n) = (n — 1)! for any natural
number n > 1. Note also that the characteristic function of an exponential random
variable with parameter A = 1 is (1 —it)~!, so ¢g, (t) = (1 —it)~".

The mean and variance of an exponential with parameter A = 1 are 1 (exercise),
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N(0,1). Tt is also straightforward to derive from the characteristic function of S,

so let us normalize and consider T;, := By the central limit theorem, 7;, EEN
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that ¢r, (t) = e~V (1 - \’/—%) . By the continuity theorem, we know that ¢,
will converge pointwise to the characteristic function of a N(0,1) random variable
as n — oo. In other words, ¢p, (t) — e~ /2,

Using the change of variable formula (4.7.3 in Grimmett-Stirzaker) we can also
directly write down fr . For x > —y/n:
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Fr, (@) = Vi fs, (v + n) = o

In particular,
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fr,(0) = T(n)  (n—-10 n! - n!
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2 STIRLING’S FORMULA

To prove Stirling’s formula, we need to check that this goes to \/% as n — o0o.

Note that ¢p is absolutely integrable when n > 2 (because |¢1, (t)| behaves like
i tl” when t is big — you may also want to draw a picture of the numbers 1 and
% on the complex plane). Thus using the Fourier inversion formula, for n > 2 we
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have:

As n — oo, we saw that ¢r, (¢ ) —e Moreover there is a function g such
that for all n > 2, |¢r, (t)| < |g(t)] and [ |g(t)|dt < oo (exer01se first prove the

simpler result that there is such a g umformly bounding 2 g, fort > 1 and n > 2).
Therefore by the dominated convergence theorem,
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as desired.



