
STIRLING’S FORMULA

Stirling’s formula says that for a natural number n, n! is approximately equal to
nne−n

√
2πn, in the sense that their ratio tends to 1:

Theorem (Stirling’s formula).

lim
n→∞

nne−n
√

2πn

n!
= 1

We give a short proof using the central limit theorem and the theory of charac-
teristic functions. This is based on Example 5.9.6 in Grimmett-Stirzaker. The idea
is to study what happens if we apply the central limit theorem to a sequence of
exponential random variables. We will use the following result (a proof is sketched
in the extra credit assignment).

Fact (Fourier inversion formula). Let X be a random variable and let φ be its char-
acteristic function. If

∫∞
−∞ |φ(t)|dt < ∞, then X is a continuous random variable

and its density function is given by:

fX(x) =
1

2π

∫ ∞
−∞

e−itxφ(t)dt

Proof of Stirling’s formula. Let X1, X2, . . . be a sequence of independent exponen-
tial random variable with parameter λ = 1. Let Sn := X1 + . . .+Xn. By a problem
in assignment 7, Sn is a Gamma random variable with parameters 1 and n. That
is, fSn(x) = 1

Γ(n)x
n−1e−x for x ≥ 0. Recall that Γ(n) = (n − 1)! for any natural

number n ≥ 1. Note also that the characteristic function of an exponential random
variable with parameter λ = 1 is (1− it)−1, so φSn(t) = (1− it)−n.

The mean and variance of an exponential with parameter λ = 1 are 1 (exercise),

so let us normalize and consider Tn := Sn−n√
n

. By the central limit theorem, Tn
D−→

N(0, 1). It is also straightforward to derive from the characteristic function of Sn

that φTn
(t) = e−i

√
nt
(

1− it√
n

)−n
. By the continuity theorem, we know that φTn

will converge pointwise to the characteristic function of a N(0, 1) random variable

as n→∞. In other words, φTn
(t)→ e−t

2/2.
Using the change of variable formula (4.7.3 in Grimmett-Stirzaker) we can also

directly write down fTn . For x ≥ −
√
n:

fTn(x) =
√
nfSn(x

√
n+ n) =

√
n(x
√
n+ n)n−1e−(x

√
n+n)

Γ(n)

In particular,

fTn
(0) =

nn−1/2e−n

Γ(n)
=
nn−1/2e−n

(n− 1)!
=
n · nn−1/2e−n

n!
=
nne−n

√
n

n!
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2 STIRLING’S FORMULA

To prove Stirling’s formula, we need to check that this goes to 1√
2π

as n → ∞.

Note that φTn
is absolutely integrable when n ≥ 2 (because |φTn

(t)| behaves like
1
|t|n when t is big – you may also want to draw a picture of the numbers 1 and
it√
n

on the complex plane). Thus using the Fourier inversion formula, for n ≥ 2 we

have:

fTn(0) =
1

2π

∫ ∞
−∞

φTn(t)dt

As n → ∞, we saw that φTn(t) → e−t
2/2. Moreover, there is a function g such

that for all n ≥ 2, |φTn(t)| ≤ |g(t)| and
∫∞
−∞ |g(t)|dt < ∞ (exercise; first prove the

simpler result that there is such a g uniformly bounding 1
tn , for t ≥ 1 and n ≥ 2).

Therefore by the dominated convergence theorem,

lim
n→∞

nne−n
√
n

n!
= lim
n→∞

fTn
(0) = lim

n→∞

1

2π

∫ ∞
−∞

φTn
(t)dt =

1

2π

∫ ∞
−∞

e−t
2/2dt =

1√
2π

as desired. �


