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1. Introduction

In this report, I describerchoosec , a tool to synthesize code snippets from specifications written in the
language of linear rational arithmetic.rchoosec produces a Scala1 subroutine that can readily be integrated
in a more complex project. The main idea is to let the programmer describewhat is wanted rather thanhow to
obtain it. Another goal is to produce code that isspecializedto the task at hand, so that it runs faster than calling
a generic solver.

I outline some possible practical applications in control theory. In particular, I present a “proof of concept”
simulator of a rocket in a gravitational field. The rocket’s engine is partially controlled by synthesized code (see
Section 5.3).

2. Examples

Given two rational numbersa andb, consider the problem of finding a rational numberx such thatx < a and
x ≤ b. This can be directly written as a constraint forrchoosec as follows:

RChoose (x)
{
x < a && x <= b

}

This declares thevariable x, the parametersa andb, and the relation thatx must satisfy with respect to the
parameters.

From this description,rchoosec will produce a Scala method taking as arguments the parameter (in alphabeti-
cal order) and returning a list of elements corresponding tothe variables2. For the example above, the following
code is produced:

def foo (a : Rational, b : Rational) : List[Rational] =
{
val one : Rational = Rational(1,1)
val x : Rational = ((List[Rational](a,b)).min) − (one )
List(x )

}

Here,Rational is a type implementing arbitrary precision rational numbers. Synthesis for limited precision
types such as floating points is described in Section 5.2 .

Notice that given anya andb, there are infinitely manyx satisfying the constraints. One can try to restrict the
solution space by maximizing over all possiblex. This is done by adding the function to maximize in square
brackets just before the constraints, like this:

RChoose (x)[x]
{
x < a && x <= b

}

Notice that ifa ≤ b, a is only a least upper bound (i.enot a maximum) to the original problem, therefore no
solution exists. In such a case,rchoosec generates aprecondition: a formula of the parameters that is true
if and only if the resulting problem has a solution. In that case, the precondition would beb < a. The code
generated by the powerful, but slow, Fourier-Motzkin method (see Section 3.4) is:

1http://www.scala-lang.org/
2 I use a list instead of a tuple, as the tuple size in Scala is limited, and there could be many variables.
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val mOne : Rational = Rational(−1,1)
val zero : Rational = Rational(0,1)
if ((((mOne ) ∗ (a)) + (b)) < (zero ))
List(b)

else

throw(new NoSolutionException(”Pre−condition not satisfied”))

Other problems that can make a constraint become unsatisfiable are unfeasibility and unboundedness (see
Section 4.1.2).

For more complicated formulas, the Fourier-Motzkin methodbecomes too slow, so generating an exact pre-
condition is difficult. In that case,rchoosec will use a special symbol, “unknown”, inside the precondition to
indicate uncertainty. Typically, the precondition then becomes only necessary, but not sufficient. Consider the
following constraints:

RChoose (x,y)[2∗x + y] {
2∗x + y <= 42 &&
(1/2)∗x + (3/4)∗y < a &&
(5/9)∗a − 4∗y <= x &&
exists (v, 0 <= v && v + 1 == a) &&
forall (w, w < 1 || a < w ∗ 1000)

}

This demonstrates the syntax to use quantifiers and input rational numbers. Note that the variables in this
example arex andy, and the only parameter isa.

The generated precondition for this example is:unknown ∧ (−1 + a
1000 < 0) ∧ (1 − a ≤ 0) . The last two

relations are due to the quantified parts of the constraints,whereas the first one indicates that something more
may need to hold for the problem to be satisfiable. Indeed, it turns out the assignmenta = 2 satisfies the second
part of the precondition but the synthesized code will stillreturn an error:

choosec.synthesis.NoSolutionException: Problem is bounded by least upper bound 464/45

and feasible but has no optimal solution

3. Synthesis and the Fourier-Motzkin method

In this Section, I give the basic definitions and describe theFourier-Motzkin synthesis method.

3.1 Ordered Fields

Definition 1. An ordered field(F,+, ⋆,≤) is a field together with a total order≤ satisfying the following
properties:

1. For anya, b, c ∈ F , if a ≤ b, thena+ c ≤ b+ c

2. For anya, b ∈ F , if a ≥ 0 andb ≥ 0, thenab ≥ 0.

The rationals, computable, or real numbers are well known examples of ordered fields, whereas finite fields
or the complex numbers cannot be ordered to satisfy the aboveproperties. Moreover, it is easy to see that any
ordered field must contain the rational numbers as a subfield.[Lang 1993].
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To avoid any numerical issue, my implementation uses “pure”rational numbers (i.e implemented using un-
bounded precision integers) by default, but the techniquesdescribed in this report work for any ordered field3,
so I will formulate them in this setting whenever possible. Note that the finite-precision floating point numbers,
as implemented on a modern computer, are not an ordered field as they form a finite set. However they are very
fast to compute with, and one can argue they are a good “practical approximation” of an ordered field, so my
implementation can also cope with them, with the limitations described in Section 5.2.

I will use Q to refer to the set of rational numbers, and the symbolQ to refer to an arbitrary ordered field. For
an arbitrary setS, andm,n ∈ Z>0, Sn will denote the set ofn components vectors of elements inS, andSm×n

will denote the set of matrices withm lines,n columns, and elements inS.

3.2 Linear ordered-field arithmetic

Definition 2. Given an ordered fieldQ, a formula of linearQ-arithmeticis a first order boolean formula whose
relation symbols are≤, <, or=, and whose terms are of the form

q1x1 + q2x2 + ...+ qnxn

whereqi ∈ Q for all i, and thexis are variable symbols.

For example, a formula of linear rational arithmetic is2a + 3b < 1
2x ∨ (x = 42 ∧ ¬∀y : y ≤ x), whereas

x1x2 = 0 or ax1 + bx2 < 1 are not formulas of linear arithmetic.

3.3 Synthesis

Given a formula of linearQ arithmeticφ[x1, ..., xn, a1, ..., am]4, one is interested in the following questions:

1. Given valuesb1, ..., bm ∈ Q for theparametersa1, ..., am does there existy1, ..., yn ∈ Q such that

φ[y1/x1, ..., yn/xn, b1/a1, ..., bm/am] (1)

is true ?

2. If they exist, how can they be (efficiently) computed ?

Formally, to answer the first question one wants to find apreconditionφ̃[a1, ..., am] such that̃φ⇔ ∃x1...∃xnφ.
Because it will be evaluated on a computer,φ̃ needs to be quantifier-free. Thus one wants to performquantifier
eliminationonφ.

To answer the second question, givenb1, ..., bm such thatφ̃[b1/a1, ..., bm/am] one wants to computewit-
nessesy1(b1, ..., bm), ..., yn(b1, ..., bm) such that (1) is true (i.e one wants to find an explicit model for
φ[b1/a1, ..., bm/am]).

A more elaborate formal definition of a synthesis procedure is given in [Kuncak et al. 2010]. Here it suffices
to say thatrchoosec takes as input a formula of linearQ arithmetic and a (non-empty) subset{x1, ..., xn} of
variables appearing in the formula, and outputs a precondition (also in the language of linearQ-arithmetic) and
code to compute the witnesses as described above. This code is called thesynthesizedcode in this report.

rchoosec also takes as input a linear functionf : Qn → Q to be maximized over all possible satisfiable values.
Here, linear meansf must be of the formf(x1, ..., xn) = q1x1 + ... + qnxn, with qi ∈ Q for all i. In order to

3 The implementation could for example be modified to handle the computable numbers.
4 The notationφ[y1, ..., yn] is used to denote a formula whose free variables are in{y1, ..., yn}, whereasφ[t1/x1, ..., tn/xn] denotes
the formula wherexi has been replaced byti.
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be able to synthesize more efficient code, it is sometimes convenient to consider this input separately. However,
observe that maximizingf over allx1, ..., xn such thatφ holds is equivalent to findingx1, ..., xn such that

φf := φ ∧ ∀y1...∀yn : (¬φ[y1/x1, ..., yn/xn] ∨ f(y1, ..., yn) ≤ f(x1, ..., xn)). (2)

holds. Therefore adding an objective function does not change the general problem. The following definitions
summarize the above discussion.

Definition 3 (Synthesis Problem). A synthesis problemis a triple(φ, f, x), whereφ is a formula of linearQ
arithmetic,x is a vector ofn ≥ 1 free variables ofφ, andf : Qn → Q is a linear objective function.

Definition 4 (Satisfiability). A synthesis problem(φ[x1, ..., xn, a1, ..., am], f, (x1, ..., xn)) is said to besat-
isfiable for parameter valuesb1, ..., bm if ∃x1...∃xnφf [b1/a1, ..., bm/am] is true. The problem is said to be
unsatisfiableif it is not satisfiable.

Computability One of the main reason for restricting oneself to the language of ordered-field linear arithmetic
is that there exists a decision procedure for this theory, i.e there is an algorithm to decide if any closed formula of
the language is true or false5. In contrast, it is a corollary of Gödel’s incompleteness theorem that if one allows
e.g multiplication between variables, then the problem is no longer decidable for rational arithmetic [Robinson
1949] (although it stays decidable for e.g arithmetic over the computable numbers [Tarski 1951]).

Efficiency Moreover, if one disallows disjunctions, any formula can bedecided quickly using methods from
linear programming. This assertion is made precise in appendix D.

Thus one can hope there also exists asymptotically efficientsynthesis algorithms for some particular cases.
In contrast, integer programming is well-known to be NP-hard, so synthesis for integer linear arithmetic is
(believed to be) computationally more difficult, although it can also be done (see [Kuncak et al. 2010]).

3.4 The Fourier-Motzkin synthesis method

The Fourier Motzkin quantifier elimination method does the following: given a formulaφ of linear arithmetic
and one of its free variablex, it returns a new formulaψ that doesnot havex as a free variable such that
∃xφ ⇔ ψ . Because∀xφ is equivalent to¬∃x¬φ, the method can be used as a decision procedure for linear
arithmetic. Moreover, the method can also be adapted to synthesis, as is explained in details in [Kuncak et al.
2010]. In this Section, I will summarize the Fourier-Motzkin method as it is used inrchoosec . I assume
one wants to synthesize the formulaφ without any objective function to maximize (one can always use (2) if
needed), for the single variablex only (synthesis for several variables is done recursively).

DNF assumption Givenφ[x], first convert it to prenex disjunctive negation-normal form, i.e find an equivalent
formulaψ[x] of the form

ψ = Q1x1Q2x2...Qmxm (ψ1 ∨ ψ2 ∨ ... ∨ ψn)

WhereQi ∈ {∀,∃}, and theψis are conjunctions, with the negations “pushed as far insideas possible”. In the
worst case, such a conversion can be done inO(2|φ|) time, where|φ| is e.g the size of a binary encoding for
φ. It is then clear that all the quantifiers can be eliminated byusing the Fourier-Motzkin quantifier elimination
method recursively.

Note however that even though eliminating an existential quantifier is simple, eliminating a universal quantifier
is not, as conversions to DNF must be done several times. For example, consider the formula∀y(φ1 ∨φ2 ∨ ...∨
φn). It can be rewritten¬∃y¬(φ1 ∨ ...∨ φn) ≡ ¬∃yΨ, whereΨ[y] is in disjunctive normal form (i.e potentially

5 Observe that deciding a formula is the special case of synthesis when the set of variables includesall free variables in the formula, i.e
when there are no parameters.
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exponentially larger thanφ1 ∨ ... ∨ φn). Once quantifier elimination has been done onΨ, the negation of the
result must again be converted to DNF... As a matter of fact, synthesis of universal quantifiers has been observed
to be very slow using the method. It follows that (2) is not a practical formula to use. The methods described in
Section 4 consider the objective function as a separate input.

Synthesizing disjunctions Because of what has been said above, one can supposeφ[x] is in disjunctive
negation-normal form without quantifiers. One can actuallyfully remove negations by observing that¬(a <
b) ≡ b ≤ a, ¬(a = b) ≡ (0 < a − b) ∨ (0 < b − a) and so on. Furthermore, observe that∃x(φ1 ∨ φ2) ≡
∃xφ1 ∨ ∃xφ2, thus it suffices to recursively synthesizeφ1 and φ2. Then if ψ1, ψ2, code1, code2 are the
preconditions and the synthesized code for the first and second conjunctions respectively, the precondition for
φ will be ψ1 ∨ ψ2, and the code will be of the form:

if (ψ1)
code1

else if (ψ2)
code2

else

error (”Pre−condition not satisfied”)

Synthesizing conjunctions To synthesize a conjunctionφ, observe that if some relation in the conjunction can
be put in the formx = f(a1, ..., ak), wherex /∈ {a1, ..., ak}), then this gives an expression forx as a function
of the parameters, so the code forx has been found. Otherwise,φ can be put in the following form:

φ =

(

nl
∧

i=1

(li < x)

)

∧

(

nu
∧

i=1

(x < ui)

)

∧

(

nL
∧

i=1

(Li ≤ x)

)

∧

(

nU
∧

i=1

(x ≤ Ui)

)

(3)

Wherex does not occur in anyli, ui, Li, Ui. It is then easy to see there is a solution if and only if those bounds
are consistent, i.e the precondition should be:





∧

i,j

(li < uj)



 ∧





∧

i,j

(li < Uj)



 ∧





∧

i,j

(Li < uj)



 ∧





∧

i,j

(Li ≤ Uj)



 (4)

If φ originally hadn literals, then (4) will haveO(n2) literals in the worst case. Therefore ifv variables needs to
be eliminated, the Fourier Motzkin synthesis method will takeO(n2

v

) time in the worst case. Thus the algorithm
has doubly-exponential complexity, even if one does not take into account the conversion to disjunctive normal
form.

To find an explicit value forx, let L be the maximum of all lower bounds, andU the minimum of all upper
bounds6. Then if (4) is satisfied, then eitherL = U , andx = U is a solution to (3), orL < U , and anyx such
thatL < x < U is a solution.

Finding a good midpoint As any ordered field contains the rationals, a solution that always works is to take
x = L+U

2 , i.e the average betweenL andU . However, this may not always be optimal, so inrchoosec
computingx is left to the implementer of the ordered field’s data type. More on this can be found in Section
5.1.4

6 If there are no lower bounds, one can simply takex = U − 1. Similarly, if there are no upper boundsx = L+ 1 is a solution.
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4. Synthesis methods based on linear programming

Even though it is very powerful, the Fourier-Motzkin methodhas a very high computational cost.

The methods presented in this Section are a better alternative for many practical cases. Their main drawback is
their lack of generality: they often cannot determine a sufficient precondition to the satisfiability of the problem.
As a direct consequence, they cannot (in general) be used to synthesize formulas with quantifiers.

I first recall some definitions from linear programming, and then move on to explain the methods in detail.

4.1 Preliminaries

4.1.1 The “unknown” symbol

To deal with the fact that the synthesis methods may not return a meaningful precondition anymore, I use a new
symbol,unknown, in linear arithmetic formulas to represent uncertainty. Informally, the symbol can be seen as
a black box that can contain either true or false. A formal definition of the resulting three-valued logic can be
found in [Kleene 1952].

4.1.2 Unsatisfiability

The following definitions show all the ways in which a synthesis problem can fail to be satisfiable.

Definition 5 (Feasibility). A synthesis problemP := (φ[x1, ..., xn, a1, .., am], f, (x1, ..., xn)) is said to be
feasiblefor the parameter valuesb1, ..., bm if (φ, 0, (x1, ..., xn)) is satisfiable for those parameter values, i.e
φ[b1/a1, ..., bm/am] has a model.

Definition 6 (Boundedness). A feasible synthesis problemP := (φ[x1, ..., xn, a1, ..., am], f, (x1, ..., xn)) is
said to beboundedfor the parameter valuesb1, ..., bm if there existsC ∈ Q such that for ally1, ..., yn ∈ Q,
φ[y1/x1, ..., yn/xn, b1/a1, ..., bm/am] implies thatf(y1, ..., yn) ≤ C. The smallest suchC is called theleast
upper boundof P 7

Definition 7 (Maximizability). A feasible and bounded synthesis problemP := (φ[x1, ..., xn, a1, ..., am], f, (x1, ..., xn))
is said to bemaximizablefor the parameter valuesb1, ..., bm if the least upper boundL of the problem is also a
maximum, i.e there existsy1, ..., yn such thatφ[y1/x1, ..., yn/xn, b1/a1, ..., bm/am] andf(y1, ..., yn) = L.

Examples Assumingx is the variable one wants to maximize, and there are no parameters, the problems
associated with the formulas(x < 1) ∧ (x > 1), x > 1, x < 1, andx ≤ 1 are unfeasible, unbounded,
unmaximizable, and maximizable respectively. The least upper bound of the last two is1, and it is only a
maximum for the last one.

Lemma 1. A synthesis problem is satisfiable (for some given parametervalues) if and only if it is maximizable
for those values.

Proof. Follows directly from the definitions.

4.1.3 Linear Programming

I recall a few elementary definitions and theorems from linear programming. I closely follow [Eisenbrand 2011],
but the proofs can also be found in other introductory books like [Bertsimas and Tsitsiklis 1997] or [Matousek
and Gärtner 2006].

7 Such a smallest element always exists: the Fourier-Motzkinsynthesis method can be used to compute it.
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Definition 8 (Linear program). Let m,n ∈ Z>0, A ∈ Qm×n, b ∈ Qm, c ∈ Qn. A linear program (LP)is an
optimization problem that can be put in the form

max{cTx : Ax ≤ b, x ∈ Qn} (5)

where the inequality is taken componentwise.

Definition 9 (Linear program with strict inequalities). Let m,n, r ∈ Z>0, A1 ∈ Qm×n, b1 ∈ Qm, c ∈
Qn, A2 ∈ Qr×n, b2 ∈ Qr. A linear program with strict inequalities (LPWS)is an optimization problem of
the form

max{cTx : A1x ≤ b1 ∧A2x < b2, x ∈ Qn} (6)

where the inequalities are taken componentwise. The linearprogram corresponding to (6) is the one where the
strict inequality is replaced by a non-strict one.

Definition 10 (Dual of a linear program). Thedual of (5) is defined to be the linear program

min{bT y : AT y = c, y ≥ 0, y ∈ Qm} (7)

(5) is also calledprimal with respect to (7).

Note that a linear program is maximizable if and only if it is feasible and bounded. Such a relation does not hold
for a linear program with strict inequalities.

If the LP is bounded, one can always do a change of coordinatesto let the matrixA have full column rank.
Hence in what follows I assume the LP is bounded and that the matrix A has full column rank, unless stated
otherwise.

Definition 11 (Basis). A basisfor the LP (5) is a setB ⊆ {1, ...,m} such that|B| = n andAB is invertible8.
Thevertexof a basisB is x∗B := A−1

B bB. A basis is said to befeasibleif its vertex is such thatAx∗B ≤ b.

Definition 12 (Roof). A roof for the LP (5) is a basisB such that the LP

max{cTx : ABx ≤ bB} (8)

is bounded.

Lemma 2. Let B be a basis. ThenB is a roof if and only ifc ∈ cone({ai | ai ∈ B}), i.e c can be written
c =

∑

i∈B λia
T
i with λi ≥ 0 for all i ∈ B.

Intuitively, a roof can be thought of as a set of half-spaces bounding the LP polyhedron from above. Note that
Lemma 2 implies that the roofs of a linear program donot depend on the vectorb. A feasible basis can be
thought of as simply a vertex of the LP polyhedron. The relationship between the two is given by:

Lemma 3. A feasible basisB is a roof if and only if its vertex is an optimal solution of theLP (5) . Such a basis
is said to beoptimal.

Given an initial roofB, one can use thedual simplex algorithm(Algorithm 1) to find an optimal basis.

The primal simplex algorithm is similar, but starts with a feasible basis and moves up along the constraint
polyhedron to find a roof. My implementation uses the dual simplex algorithm for reasons that will be explained
in Section 4.4.

The termination and efficiency of Algorithm 1 depend on how steps two and three are implemented. The wayi
andj are chosen is called thepivot rule. While hundreds of such rules have been devised, it is still an important

8 The notationAB denotes the submatrix ofA formed with the lines indexed byB. I sometimes writeai for A{i}.
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Algorithm 1 Dual simplex algorithm
1: while B is not feasibledo
2: Find i ∈ {1, ...,m} −B such thataix∗B > bi.
3: Find j ∈ B such thatB′ := (B ∪ {i}) − {j} is a roof, and the vertex ofB′ is feasible forB, i.e

ABx
∗
B′ ≤ bB .

4: If such aj does not exist, the LP is unfeasible, otherwise letB := B′.
5: end while

open problem whether there exists a rule that lets the simplex method take polynomial time in the worst case.
The question is related to the polynomial Hirsch conjectureon the diameter of polyhedrons, see e.g [Eisenbrand
et al. 2010]. There are however polynomial time algorithms for linear programming not based on the simplex
method [Schrijver 1986], while the time complexity of the simplex algorithm has been shown to be polynomial
time if one allows a “small” random perturbation of the input[Spielman and Teng 2001].

The relation between feasible bases and roofs is strongly linked to the following Theorem.

Theorem 1 (Strong duality). Let A ∈ Qm×n be an arbitrary matrix. Then the primal LP (5) is feasible and
bounded if and only if its dual (7) is feasible and bounded. Inthat case the optimal values coincide. Moreover, if
(5) is feasible and unbounded, (7) is unfeasible, and similarly if (7) is feasible and unbounded, (5) is unfeasible.

Corollary 1 (Feasibility is almost as difficult as optimality). If (5) is feasible and bounded, an optimal value can
be found by finding a point inside the polyhedron{(x, y)T ∈ Qn+m | Ax ≤ b∧AT y = c∧y ≥ 0∧bT y ≤ cTx}.

4.2 Handling disjunctions and unboundedness

To use linear programming methods starting from a general synthesis problemP := (φ, f, (x1, ..., xn)) , the
first steps is to eliminate negations, quantifiers and disjunctions. Then it is easy to see the resulting problem is
in fact a linear program with strict inequalities.

To eliminate quantifiers fromφ, the Fourier-Motzkin method must unfortunately be used. Eliminating negations
from φ is done as explained in Section 3.4. To deal with disjunctions, one first needs to convertφ to disjunctive
normal form. Hence I assumeφ is in the form

φ = φ1 ∨ φ2.. ∨ φk

where theφis are conjunctions. Synthesis methods for the problemsPi := (φi, f, (x1, ..., xn)) are described in
the next sections, so I assume they are available, and thatk ≥ 2.

4.2.1 General idea

Suppose one only cares about synthesizing code, not about the precondition. Given parameter valuesb1, ..., bm ∈
Q, suppose that allPis are maximizable for those values, and letXi := (x1,i, ..., xn,i) be the corresponding
ith optimal assignment. ThenP is itself maximizable, and the synthesized code should output the assignment
among theXis that maximizesf .

Consider however what happens when e.gk = 2 andP1 is not maximizable. Then the satisfiability ofP
depends onwhyP1 is not maximizable: for example ifP1 is “only” unfeasible, butP2 is maximizable, thenP
is maximizable and the synthesized code should outputX2. On the other hand ifP1 is feasible but unbounded,
thenP is also feasible but unbounded, so it is not satisfiable. Therefore it is necessary to make the synthesized
code for thePi return their exactresultsrather than just errors if they are unsatisfiable. To define this precisely,
I first extendQ in order to express unsatisfiability results:
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Definition 13. Given an ordered fieldQ, define

Q̂ := (Q× {−1, 0}) ∪ {−∞,∞} (9)

and order it using the lexicographical order, considering−∞ as a smallest element, and∞ as a largest element.

Intuitively, Q̂ can be thought of asQ with a smallest and a largest element added, and such that foreveryx ∈ Q,
there existsxǫ such thatxǫ < x, but for ally < x with y ∈ Q, y < xǫ. In other words, there exists an element
“infinitesimally smaller” thanx.

Definition 14 (Optimal value of a LPWS). Theoptimal valueof a linear program with strict inequalitiesL is
an elementr of Q̂ defined as:

• r = −∞ if L is unfeasible.

• r = ∞ if L is feasible but unbounded.

• r = (q,−1) if L is feasible and bounded but not maximizable, with least upper boundq.

• r = (q, 0) if L is maximizable with maximumq.

Definition 15 (Result of a LPWS). Theresultof a linear program with strict inequalities with variablesx1, ..., xn
is a tuple(r, x) where

• r ∈ Q̂ is the optimal value of the LPWS.

• x ∈ Qn is an optimal vertex if the LPWS is maximizable, and0 otherwise.

Example The result of the LPWSmax{2x : x ≤ 1} is ((2, 0), 1), whereas the result of the LPWS
max{2x : x < 1} is ((2,−1), 0). From the ordering defined in Definition 13, one sees that the optimal value of
the first LPWS is larger than the second one.

From now on, I assume that the synthesized code for thePis returns the result of the corresponding LPWS.
Let code1, ..., codek be the synthesized codes for thePis, then one can synthesize the following code forP (I
assume the input parameters areb1, ..., bm)

val (r1, y1) = code1(b1, ..., bm)
...
val (rk, yk) = codek(b1, ..., bm)
val j = arg max{ri | i ∈ {1, ..., k}}
if (rj ∈ Q× {0})

return yj
else

error (‘‘Problem is unsatisfiable’’)

This simply expresses the fact that if the LPWS that achievesthe largest value is maximizable, then the problem
is maximizable, otherwise it is not.

This code works fine, but it is not clear what precondition should go with it. Moreover, one needs to compute
the results ofall Pis before obtaining a result, whereas if e.gP1 were unbounded for the particular parameter
values, then there would be no need to consider the other problems. For this reason it is useful to look more
closely at what causes unboundedness in order to synthesizemore efficient code.

4.2.2 Handling unboundedness

The following results characterize the unboundedness of a synthesis problem whose constraint is a conjunction.
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Lemma 4. Suppose the LPWSL in (6) is feasible. Then it is unbounded if and only if its corresponding LPL′

is feasible and unbounded.

Proof. The “only if” part is straightforward. To prove the “if” part, introduce a new variableλ and the constraint
λ ≤ cTx to bothL andL′. Apply Fourier-Motzkin elimination toL′ to eliminate all variables butλ. By
hypothesis,L′ is unbounded, soλ must not have any upper bound in the resulting formulaψ. BecauseL′ is
a LP, all the inequalities inψ are non-strict. Applying Fourier-Motzkin elimination toL will only result in
some of those non-strict constraints becoming strict, butλ still will not admit any upper bound. ThereforeL is
unbounded.

Theorem 2. If a synthesis problemP without disjunctions, negations or quantifiers is feasiblebut unbounded
for some parameter valuesd1, ..., dr , then foranyparameter values,P is either unfeasible or unbounded.

Proof. Consider the LPWS associated withP and the parameter valuesd1, ..., dr. By Lemma 4, it suffices to
consider the corresponding linear programL that can be writtenmax{cTx : Ax ≤ b}. Note that onlyb depends
on the choice of parameter values. By hypothesis,L is feasible but unbounded. By Theorem 1, the dual linear
programmin{bT y : AT y = c, y ≥ 0} is unfeasible. But unfeasibility of the dual does not dependon b, and
therefore does not depend on the parameter values. Thus the dual LP is always unfeasible, hence the primal LP
is always either unfeasible or feasible but unbounded.

The proof of Theorem 2 suggests an algorithm for finding thePis that can potentially be unbounded: if the
dual LP corresponding toPi is feasible,Pi is always bounded (if it is feasible). Otherwise, it is always either
unfeasible or unbounded. Testing feasibility of the dual LPcan be done at synthesis time because this does not
depend on the problem’s parameters.

SupposeP1, ..., Pr are potentially unbounded, whereasPr+1, ..., Pk are always bounded. Ifr = k, no problems
are always bounded, so one immediately see thatP is always unsatisfiable. Otherwise,P1, ..., Pr all need to
be unfeasiblein order forP to be satisfiable. Once this is known, the code in Section 4.2.1 can be used for
Pr+1 ∨ ... ∨ Pk.

Boundedness assumptionOne can synthesize the potentially unbounded problems assuming the objective
function is zero, since only feasibility matters. Thus whensynthesizing a conjunction,one can assume it cannot
be unbounded. I will always make this assumption in what follows.

Precondition Letψ1, ..., ψk be the synthesized preconditions for the problemsP1, ..., Pk , assumingP1, ..., Pr

were synthesized with zero objective function. Then a necessary (butnot always sufficient) condition forP is

ψ = (¬ψ1 ∧ ¬ψ2... ∧ ¬ψr) ∧ (ψr+1 ∨ ... ∨ ψk) (10)

The first part expresses that all potentially unbounded problems must be unfeasible, and the second one that at
least one of the other problems must be maximizable. This is not a sufficient condition, since even if one problem
is maximizable, there could exist an unmaximizable problemwith a larger least upper bound. When there are no
strict inequalities inφr+1, ...φk, then this cannot happen, hence in that caseψ is indeed anequivalentcondition9.
Otherwise, the synthesized precondition will beψ ∧ unknown to indicate the fact that it is not sufficient.

9 Note however that the symbolunknown could appear in theψis
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Code The synthesized codes for potentially unbounded problems need not return a full result, only a boolean
that is true if and only if the problem is feasible. The final synthesized code forP will then check that all those
booleans are false before using the code from Section 4.2.1 for the bounded problems.

Now that disjunctions have been handled, the next Section focuses on bounded synthesis problems whose
constraint formulas are conjunctions. Three different methods are given.

4.3 The Fourier-Motzkin method for optimization problems

If one is willing to let the precondition become only necessary but not sufficient, it turns out the Fourier-Motzkin
synthesis method can be used also with an objective functionin a much more efficient manner than what was
presented in Section 3.4. I found the idea in [Schrijver 1986].

Givenφ[x1, ..., xn, a1, ..., am] and the linear objective functionf , use the Fourier-Motzkin synthesis method on
φ ∧ (λ ≤ f(x1, ..., xn)), consideringλ as a parameter. One obtains an equivalent formulaψ[λ, a1, ..., am] and
some codecode to producex1, ..., xn from λ, a1, ..., am.

Becauseφ is a conjunction,ψ is also a conjunction, which can be writtenψ = ψ1[a1, ..., am]∧ψ2[λ, a1, ..., am],
where each literal ofψ2 containsλ. It is clearψ1 is a necessary and sufficient condition to the feasibility of
the synthesis problem, so it is also a necessary condition toits maximizability. By hypothesis, the problem is
bounded whenever feasible, soλ must have at least one upper bound inψ2.

Fixing the parameters, one can view the upper bounds as elements ofQ̂ as follows: ifq is a strict upper bound,
view it as(q,−1). If q is a non-strict upper bound, view it as(q, 0). LetL be the resulting set of elements ofQ̂.
From correctness of the Fourier-Motzkin method, using the fact thatψ is an equivalent formula toφ, it follows
that the optimal value of the corresponding LPWS is given byminL.

To sum up, the following code (with parameter inputb1, ..., bm) will be synthesized10:

val λ = minL
if (λ ∈ Q× {0})

return (λ, code(λ, b1, ..., bm))
else

return (λ, 0)

Note that even though this is not written explicitly,L depends onb1, ..., bm.

ψ1 ∧ unknown can be used as a precondition. Theunknown symbol is not needed ifL contains only elements
of Q×{0}, i.e all the upper bounds onλ are non-strict. In that case the code above can also be optimized in the
obvious way.

This method is simple to implement, and no specific problems appear when dealing with strict inequalities,
as opposed to the next two methods. However its computational cost is as high as that of Fourier Motzkin
elimination...

4.4 Calling a solver at runtime

As already explained, the synthesis problem(φ, f, (x1, ..., xn)), whereφ is a conjunction without quantifiers or
negations can be seen as a LPWS

max{cTx : A1x ≤ b1 ∧A2x < b2} (11)

10The code assumes the preconditionψ1 holds
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where only the vectorsb1 andb2 depend on the parameters. Since the parameters will be knownonly at runtime,
a simple idea is to generate code that calls a solver for (11).Because some precomputations depend only onA1,
A2 andc, they can be done at compile-time. I first assume (11) is equivalent to a linear program of the form

max{cTx : Ax ≤ b} (12)

I then explain how the method can be adapted if the problem is really a LPWS.

4.4.1 Precomputations

Making A full rank The first step is to perform a coordinate transformation so thatA has full column rank.
One then obtains an equivalent LP problemmax{c′Tx′ : A′x′ ≤ b}. At the end of the synthesized code, the
coordinate transformation is played backward in order to obtain the solution to the original problem. The details
are explained in [Eisenbrand 2011]. Because the problem is bounded by hypothesis, such a transformation is
always possible. Algorithmically, one simply does Gauss-Jordan elimination onA, obtaining a matrixU such
thatAU is in column-reduced form. This matrix essentially describes the change of coordinates to be done.
Note that because this transformation does not depend onb, it can be done at compile time. From now on,A is
assumed to have full column rank.

Finding an initial roof As shown by Lemma 2, the roofs of (12) do not depend onb and hence do not depend
on the parameters. For that reason, my runtime solver uses the dual simplex algorithm, so that I can precompute
its initial roof at compile-time. It would also have been possible to use the primal simplex algorithm and compute
an initial feasible basis by considering the dual LPmin{bT y : AT y = c, y ≥ 0}. However,bT y is not a linear
function, so converting to the dual slightly complicates matters...

To compute the initial roof, the LP

max{cTx,Ax ≤ 0, cTx ≤ 1} (13)

is solved, with its initial roof containingcTx ≤ 1, andn− 1 linearly independent lines ofA such that together
with c they form a linearly independent set (such lines exist becauseA has full column rank).

By construction, (13) is feasible (0 is a solution) and bounded. If the final optimal roofB contains the line
cTx ≤ 1, this means the LPmax{cTx : Ax ≤ 0} does not have a roof (any of its roof has vertex zero, but
B has a non-zero vertex). Thus (12) does not have a roof so is either unfeasible or unbounded. Because it is
bounded by hypothesis, it must be unfeasible, so in that casethe synthesis result can immediately be returned.

If B does not contain the linecTx ≤ 1, B is also a roof for (12) and hence the synthesized code can simply
call the LP solver withB as a starting roof (the matrixA−1

B can also be computed in advance). In that case, the
returned precondition will simply beunknown, as nothing can be inferred before the solver has run. This isone
of the main drawback of this method.

4.4.2 Solving a LPWS

Up to now, this report has explained how linear programs can be solved, but nothing has been said about LPWS.
It turns out the result of a LPWS can be found by solving some related linear programs. To solve the LPWS
(11), the first thing to do is to solve the corresponding LP

max{cTx : A1x ≤ b1 ∧A2x ≤ b2} (14)

The precomputations described in Section 4.4.1 can be done for (14). By Lemma 4, (14) is bounded. If it is
unfeasible, then clearly (11) is also unfeasible. Otherwise, if x∗ is an optimal solution of (14), andA2x

∗ < b2,
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x∗ is also an optimal solution of (11) with optimal valueM := cTx∗. If not, it might still be possible to find an
optimal solution of the LPWS among all possible optimal solutions of (14). To find out, add a new variableδ
and solve a second LP:

max{δ : A1x ≤ b1 ∧A2x+ δ(1, 1, ..., 1)T ≤ b2 ∧M ≤ cTx ∧ 0 ≤ δ ≤ ǫ} (15)

Whereǫ > 0 can be chosen arbitrarily (a smallǫ may reduce the number of iterations). Observe that (15) is
feasible (as (14) is feasible) and bounded by construction.Moreover ifB is an optimal roof for (14),B ∪ {m}
is an initial roof for (15), wherem is the index of the line describing the constraintδ ≤ ǫ. Let δ∗ be the optimal
value of (15).

If δ∗ > 0, then taking the first components of the corresponding optimal vertex gives a solution to the original
LPWS. Otherwise,δ∗ = 0, so (11) is not maximizable. However, it must still be determined whether it is
feasible or not. To do so, (15) is solved without the constraintM ≤ cTx. If the resulting optimal value is greater
than zero, (11) is feasible but not maximizable, with least upper boundM . Otherwise it is unfeasible.

Using this method, three LPs of similar size must be solved inthe worst case. I have been unable to find a more
efficient algorithm...

4.5 Multiparametric Linear Programming

One can wonder whether more can be done than what is describedin Section 4.4: since the matrixA and the
vector c are fixed, wouldn’t it be possible tospecializethe simplex algorithm to make it run faster for that
particular case ?

The general problem of specializing an algorithm if part of its input is known at compile time is calledpartial
evaluation[Jones et al. 1993], and several powerful techniques exist to do this automatically. However, I found
it hard to partially evaluate Algorithm 1 directly, for several reasons:

1. As already mentioned, the best known worst-case upper bound on the number of iterations is exponential.

2. The result of each iteration depends heavily on the vectorb .

Still, some form of “indirect” partial evaluation can be done. The idea is to split the parameter space into
polyhedral regions. If the parameters are in a given region, their corresponding maximizer can be determined
by evaluating a simple linear function. This Section describes why this is even possible, and how it can be done.

The dual version of the algorithm I present here has first beendescribed to me by Friedrich Eisenbrand (see
Acknowledgments).

4.5.1 Initial setup

I first assume the synthesis problem can be described as a LP

max{cTx : Ax ≤ b} (16)

ForA ∈ Qm×n, where onlyb depends on the parameters. How to adapt the method if the problem is a LPWS
is explained in Section 4.5.4.

Note that in (16),b depends on the parameters in a linear way. In fact,b can be written

b = w + FΘ (17)
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whereΘ ∈ Qr is the vector containing ther parameters, andw ∈ Qm, F ∈ Qm×r are known at compile-time.
Therefore the LP can be rewritten

max{cTx : Ax ≤ w + FΘ} (18)

Finding a solution to (18) as a function of the parameters is called multiparametric linear programming. The
algorithm I will present looks a a little like the one given in[Gal and Nedoma 1972], but is slightly simpler, at
the cost of ignoring the issue of overlapping regions. Otherimprovements have been published, see e.g [Borelli
et al. 2003].

4.5.2 Main idea

Lemma 5. The setK of all parameters for which (18) is feasible is convex.

Proof. Let Θ1, Θ2 ∈ K. By definition of K, there existsx1, x2 ∈ Qn such thatAx1 ≤ w + FΘ1,
Ax2 ≤ w + FΘ2 . Thus for any0 ≤ λ ≤ 1,

A(λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2

≤ λ(w + FΘ1) + (1− λ)(w + FΘ2)

= w + F (λΘ1 + (1− λ)Θ2)

ThereforeλΘ1 + (1− λ)Θ2 ∈ K.

Lemma 6. Let J := {1, ...,m}. A set of linesB ⊆ J is an optimal basis of (18) forsomeparameter values, if
and only if the following conditions are true:

1. AB is invertible

2. (A−1
B )T c ≥ 0

3. The polyhedron defined by the equation

(

AB̄A
−1
B FB − FB̄

)

Θ ≤ wB̄ −AB̄A
−1
B wB (19)

is non-empty. Here I have defined̄B := J −B.

Proof. By Lemma 6, it is enough to showB is a feasible roof. The first condition expresses thatB is a basis,
the second that it is a roof (using Lemma 2).B is feasible if its vertexx∗ satisfiesAx∗ ≤ w + FΘ. By
definition ofx∗,ABx

∗ = wB + FBΘ, thusB is feasible if and only ifAB̄x
∗ ≤ wB̄ +FB̄Θ. Using the fact that

x∗ = A−1
B (wB + FBΘ), and rearranging the terms, one obtains (19).

Note that ifc = 0, any basis will satisfy the second condition of the Lemma. Because one wants to reduce the
number of optimal bases, it is a good idea to replacec with a non-zero vector in that case. Taking any non-zero
line ofA will do, for example.

Assuming a listB1, B2, ..., Bk of all optimal bases satisfying Lemma 6 is available, findingthe solution to (18)
for a givenΘ is easy: search through the list until a basisB is found such that (19) is satisfied. Then the optimal
solution is given byx∗ = A−1

B (wB +FBΘ), and the maximal value bycTx∗. The synthesized code would look
like this:
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if (Θ satisfies (19) with B = B1){
val xopt = A−1

B1
(wB1

+ FB1
Θ)

val r = (cTx∗, 0)
return (r, xopt)

}
else if (Θ satisfies (19) with B = B2){
...

}
...
else if (Θ satisfies (19) with B = Bk){
...

}
else {

// Problem is unfeasible
return (−∞, 0)

}

In contrast to calling a solver at runtime, this code only evaluates simple arithmetic expressions. In particular,
testing if (19) is true will evaluate a conjunction of lineararithmetic withm − n literals. In the worst case,
k(m− n) literals need to be evaluated, which can be a problem ifk is large. Although I have not implemented
this, it is possible to make the search take only aboutlog(k) operations if one is willing to do a lot more
preprocessing [Tøndel et al. 2002].

One can output a necessary and sufficient precondition by taking the disjunction of (19) for all optimal bases.

4.5.3 Finding all the regions

One question remains: how can the list of all optimal bases befound ? One simple strategy is to test all possible
n-subsets of{1, ...,m} and add only those that satisfy the conditions of Lemma 6. Note however that to test
whether (19) has a solution, the corresponding linear program needs to be solved, so to test this for all possible
subsets, one would need to solve

(

m
n

)

linear programs in the worst case, which is clearly prohibitive. The
approach presented below is better in some cases.

Definition 16 (Neighboring basis). Twon elements setsB1 andB2 are said to beneighborsif |B1∩B2| = n−1.

Definition 17 (Graph of optimal bases). LetS be the set of all bases satisfying the conditions of Lemma 6. The
graph of optimal basesis defined as the undirected graph with vertex setS in which two bases share an edge if
and only if they are neighbors.

Theorem 3. The graphG of optimal bases is connected.

Proof. If |S| ≤ 1, there is nothing to prove. Otherwise, letB1, B2 be two different optimal bases inG. Let
Θ1,Θ2 be two different parameter vectors for whichB1 andB2 respectively are optimal bases. By Lemma 5,
Θ(λ) := λΘ1 + (1 − λ)Θ2 admits an optimal basis for any0 ≤ λ ≤ 1. Intuitively, one has to choose among
those bases to form a path fromB1 to B2 in G. To do this, consider (18) as a parametric linear program inλ
only, i.e of the formmax{cTx : Ax ≤ w + F (Θ(λ))} which is equivalent tomax{cTx : Ax ≤ w̃ + F̃ λ}, for
somew̃ ∈ Qm, F̃ ∈ Qm×1. One can consider the associated LP

max







( cT 0 )

(

x
λ

)

:





A −F̃
0 1
0 −1





(

x
λ

)

≤





w̃
1
0











(20)
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The last two lines indicate that0 ≤ λ ≤ 1. Note that the matrix of the LP has full column rank. By the above
discussion, (20) is feasible (in fact it is feasible for anyλ), and bounded, as one ofB1∪{m+1}, orB2∪{m+2}
is a roof for it. To each roof of (20) correspond at least one optimal basis inG, and conversely to each optimal
basis inG correspond at least one roof in the LP. LetB be an optimal basis for (20), andB∗ be a corresponding
basis inG. Starting from the roof corresponding toB1, run the simplex algorithm to reachB. To the sequence
of visited bases corresponds a path fromB1 toB∗ in G. Similarly, there is a path fromB2 toB∗. Hence there
is a path fromB1 toB2.

Theorem 3 suggests the following algorithm: find an initial optimal basisB. List all the neighboring bases of
B, and find out which ones are optimal. Then repeat the same steps for those bases, until the full graph has been
built. In other words, do a graph traversal onG.

Finding the initial basis An initial optimal basis can be found in two steps. First, finda parameter vectorΘ∗

such that (18) is feasible. This can be done by solving the LP with no objective function, considering bothx and
Θ as variables. Second, find an optimal basis for the linear programmax{cTx : Ax ≤ w + FΘ∗}.

Computational complexity The number of neighbors of ann element subset of{1, ...,m} is n(m− n). Thus
if there arek optimal bases, the algorithm will checkO(n(m − n)k) sets for optimality. If, e.gF has a low
column rank, there could be much fewer optimal bases than

(

m
n

)

, so for such cases the algorithm is much faster
than the brute-force approach.

However, it is very easy to come up with examples where the number of regions grow exponentially. Consider
for example the dual of (18)

max{−(w + FΘ)T y : y ∈ P}

Taker = m,w = 0, F = Im, andP the cube, i.eP := {y ∈ Qm | −1 ≤ yi ≤ 1, i ∈ {1, ...,m}}. Then for any
of the2m vertices ofP , there is aΘ such that it is an optimal vertex.

It follows that the method also has computational complexity too high to be used on “large” problems. However
the complexity is still asymptotically better than that of Fourier-Motzkin elimination.

4.5.4 Handling strict inequalities

If the problem to be synthesized is the LPWSmax{cTx : A1x ≤ b1 ∧A2x < b2}, techniques similar to the one
explained in Section 4.4.2 can be used: find all the optimal bases for the LPsmax{cTx : A1x ≤ b1∧A2x ≤ b2},
max{δ : A1x ≤ b1 ∧A2x+ δ(1, 1, ..., 1)

T ≤ b2 ∧ c
Tx ≥ λ}, andmax{δ : A1x ≤ b1 ∧A2x+ δ(1, 1, ..., 1)

T ≤
b2}, whereλ is considered a parameter which will be replaced by the maximal value of the first LP. Then
generate the code equivalent to the algorithm described in Section 4.4.2.

When the problem has strict inequalities, the synthesized precondition is no longer sufficient so one needs to
take its conjunction with theunknown symbol before returning it.

5. Experimental results and practical applications

In this Section, I describerchoosec , my implementation of the algorithms presented in the previous sections.
I explain how I measured its performance on some sample synthesis problems. I also present the integration of
synthesized code in a rocket simulation.
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5.1 Implementation details

All the synthesis methods for linear rational arithmetic described in this report have been implemented in a Scala
program I call rchoosec . The program takes as input a constraint in linear rational arithmetic and produces
the synthesized code in Scala. This Section gives some details on its implementation.

5.1.1 Basic Usage

This documents exactly whatrchoosec does, and the input it takes.

The RChoose language For convenience,rchoosec can read its input from a text file written in theRChoose
language. The simple syntax of this language has been illustrated in Section 2, and should be self-explanatory.
A context-free grammar for the language is given in appendixA.

It is of course also possible to directly construct the constraints in Scala using the internal representation used
by rchoosec .

Choosing the synthesis methodThe synthesis method can be chosen by the user via command line options.
They are documented in theREADME file coming with the program. If no specific method is given, the Fourier-
Motzkin method for optimization problems will be used for “small” problems, and a solver will be called at
runtime for large problems. Here “small” means that the matrix A of the LP has less than 9 lines, and less than
5 variables. Those numbers are somewhat arbitrary, see Section 6 for ideas on how to better choose a default
method.

Precondition rchoosec outputs the precondition on standard output, and also writes it as a comment in the
generated code.

Generated code rchoosec generates Scala code for anObject containing two methods:

• The synthesized method: takes as arguments the parameters and return values for the variables so that they
satisfy the constraints, or throw an exception if there are no solutions. This first checks that the precondition
is satisfied.

• A main method that can be used for testing: reads the parameters from standard input, launch the synthesized
method, and prints the results.

The object also contains several variables defining rational constants used in the generated code (see Section
5.1.2), as well as the LP solver used in the synthesized code.The solver is defined outside of the synthesized
method, so that it can keep its state from one invocation of the method to the next. This is useful for optimizations
like remembering the last optimal basis, and trying it againthe next time the solver is called, see Section 5.1.5.

5.1.2 Code Generation

Code generation inrchoosec is not as simple as printing the code samples shown in sections 3.4 and 4. Indeed,
they are too general: it may happen that some condition inside anif statement is always false, or that the value
of a variable is a constant that can be propagated further. Thus it is important to do someoptimizationbefore
printing the synthesized code.

To do this, I first synthesize code in a simple intermediate language, internally calledSimple. I run the following
optimizations on the resulting code:

1. Constant propagation and constant folding

2. Dead code elimination
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3. Some symbolic folding, e.g if the expressionx+ 2x appears, it can be simplified to3x

4. Hash Consing

The first two optimizations are described in [Schwartzbach 2008]. Hash consing simply declares one variable
for each different constant rational number appearing in the code: the idea is that since e.g zero appears several
times, it will only be initialized once. This also makes the code much more readable, since one can give very
short names to those variables.

Those optimizations are done on the code repeatedly, until afixed point is reached.

5.1.3 The simplex solver

rchoosec has its own simplex solver. The solver works for any ordered field, and is exact, i.e it assumes there
are no numerical errors in all of the ordered field’s operations operations.

Performance The solver was not written with performance in mind. For example, all matrix operations are
performed functionally, without any destructive update. The results of Section 5.4 confirm the program is slow,
even compared to other exact solvers.

Pivot rule The solver implements the dual simplex algorithm (Algorithm 1). The lexicographical pivoting
rule is used, as described in [Eisenbrand 2011]. This rule guarantees that the solver will always terminate (i.e
no cycling can occur), even if the LP is degenerate.

5.1.4 Arithmetic operations

In this Section, I describe how I implemented some arithmetic operations that are useful for synthesis.

Finding a good midpoint between two rationalsIn the Fourier-Motzkin synthesis method, one often needs to
find a numberx such thatL < x < U . An obvious suchx is L+U

2 . It turns out however that this choice can
be far from optimal for rationals, as it increases the size ofx unnecessarily. As an extreme example, suppose
L = −1

21024
, U = 1

21024−1
. Then the average would be −1

21025(21024−1)
which must use about 2000 bits to store the

denominator, butx = 0 is also a midpoint that takes a much smaller amount of memory...

Because of this problem, the synthesized code uses the abstract methodupTo instead of directly computing an
average. It is up to the implementer of the ordered field’s data type to provide the method. For rationals, I use a
binary-search-like algorithm that finds anx with smallestdenominator. I now describe this algorithm. IfL < 0,
andU > 0, takex = 0. Otherwise, by symmetry one can assume0 ≤ L < U .

Let L = p1
q1

, U = p2
q2

, whereq1, q2 ∈ Z>0, p1, p2 ∈ Z≥0, gcd(p1, q1) = gcd(p2, q2) = 1. One wants to find
x := p

q
, with gcd(p, q) = 1, p, q ∈ Z>0 such that

• x < U , i.e p
q
< p2

q2
, i.epq2 < p2q, i.e

pq2 ≤ p2q − 1 (21)

• L < x, i.e
p1q ≤ pq1 − 1 (22)

If q is fixed, (21) implies

p ≤

⌊

p2q − 1

q2

⌋

(23)
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and (22) implies

p ≥

⌈

p1q + 1

q1

⌉

(24)

Assuming consistency of the bounds, the minimalp for a givenq∗ is

p∗ =

⌈

p1q
∗ + 1

q1

⌉

(25)

In conclusion, to know if a givenq∗ can be used as denominator, it suffices to check that (24) and (23) are
consistent, then a correspondingp can be found by (25). The algorithm simply does a binary search to find an
optimal denominatorq∗. One can for example start with lower bound 1, and upper bound2q1q2. However, by
doing straightforward manipulations of (22) and (21), one can show that11

⌈

q1 + q2
p2q1 − p1q2

⌉

≤ q∗ ≤

⌈

q1q2 + q1 + q2
p2q1 − p1q2

⌉

(26)

The algorithm uses these bounds instead. As a simple example, consider what happens on inputL = 1
2 , U = 2

3 .

Then
⌈

q1+q2
p2q1−p1q2

⌉

= 5, and it turns out indeed12 <
3
5 <

2
3 . This is a much better solution than the average of

L andU , 7
12 . Note that the denominator of the average, 12, is even worse than the upper bound given by (26)

which is 11. This example shows the lower-bound is tight. TheexampleL = 1
7 , U = 6

7 gives2 as minimal
denominator, which is tight with respect to the upper bound in (26).

Notice that sincep∗ increases wheneverq∗ increases, the algorithm actually gives a rational ofsmallest encoding
sizebetweenL andU .

Approximating a real number by a rational If one chooses not to synthesize floating point code (see Section
5.2), the synthesized code must be called with pure rationalarguments. Initializing a rational number from a
floating point numberx is of course a conceptually simple operation, but one may want to merelyapproximate
x with a rational of low denominator. More generally, given a real numberx and a natural numberN , one wants
to (quickly) find the best rational approximationr to x with denominator at mostN . Clearly, such a rational
will not always have denominatorN ; for example, ifx = 1

3 , N = 100, the obvious best approximation isx
itself, andx cannot be written exactly as a rational with denominator 100. There are less trivial examples, e.g
22
7 is a better approximation toπ than3.14 = 314

100 .

The problem is well known, and there is an efficient algorithmto solve it using continued fractions, see e.g
[Schrijver 1986]. This is what I ended up implementing.

Converting a rational to a floating point value This must be done when synthesizing code for floating point
types (see Section 5.2 ). Inrchoosec , this is simply implemented by converting the numerator andthe
denominator to floating point, and dividing them. It is clearthis does not work for corner cases, like e.g2

4096

24096−1
,

so rchoosec fails in those cases.

5.1.5 Optimizations and tricks

I describe some optimizations to the methods described in sections 3.4 and 4 that are implemented inrchoosec
.

11A proof is given in appendix B.
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Checking feasibility Before starting synthesis of a formula without conjunctions, quantifiers or negations,
rchoosec first checks whether there exists parameters for which it hasa solution. This is done by considering
the parameters as variables, and calling a simplex solver.

Column-reducing the constraint matrix If any of the synthesis method of Section 4 is used,rchoosec

actually always applies the change of coordinate describedin Section 4.4.1 to make the constraint matrix full
rank. There are several reasons for doing this:

1. The number of variables is reduced.

2. This is an alternative to solving the dual LP to find out whether the problem can be unbounded: as explained
in [Eisenbrand 2011], when the problem is unbounded either the coordinate transformation fails, or an initial
roof cannot be found. Since those are steps that are done anyway when calling a solver at runtime, they may
as well be used for the other methods.

Eliminating equalities Given a formulaφ without negations, conjunctions or quantifiers,φ needs to be
converted to the LPWS in “standard” formA1x ≤ b1 ∧ A2x < b2. If φ contains the equalitya = b, a
straightforward trick is to write that equality asa ≤ b ∧ b ≤ a. This is not the best thing to do however:
solving linear programs is harder than doing Gaussian elimination ! Thus what is done inrchoosec instead is
to first perform Gaussian eliminations to eliminate the equalities in φ, synthesizing code as explained in Section
3.4, and only then use the more advanced methods of Section 4.

A generalization of this idea is to try to use the Fourier-Motzkin method “as long as possible”, i.e if a variable
in φ can be eliminatedwithoutmaking the formula’s size grow, this must be attempted. Unfortunately, I haven’t
had time to implement this extension...

Remembering the last optimal roof When synthesizing code that calls a solver at runtime, it is expected that
the code will be called several times in one program run. Moreover, in some cases the parameter values may
not differ that much from one call to another, hence the optimal basis is likely to stay the same. For that reason,
rchoosec ’s solver keeps track of the last optimal roof found for each pair of constraint matrixA and objective
vectorc. This last optimal roof is used as an initial roof the next time the solver is called.

If the parameter values are very different from one call to the next, there is no reason to believe the last optimal
roof is better or worse than the one computed at synthesis time, thus the effect of this optimization should be
somewhat neutral.

If, however, the parameters stay close, this optimization can lead to dramatic improvements, as shown in Section
5.4.3

5.2 Synthesis for floating point types

Because they have finite-precision, floating point types cannot be considered as ordered fields. Because of
numerical imprecisions, the results given by LP solvers using them are almost never exact. While this may
not be a problem for some problems in engineering, several theoretical applications need exact solutions. For
example, when using an LP solver to find bounds to integer programming problems, it matters very much
whether a maximum is larger than200.000001, or just larger than199.999999 . In general, many complicated
issues arise when one wants to write correct programs that use floating point types, see e.g [Monniaux 2007].

For that reason, I chose to always do the computations exactly. However, the synthesized code can still be
computedusing exact numbers, butexecutedwith floating points. This can work especially well when the
generated code is very simple, as with the Fourier-Motzkin and multiparametric linear programming methods.
In that case however, the performance win may not be worth it,and approximating the floating point values with
rationals (see Section 5.1.4) could be a better option.

22 2011/6/10



LP solver for floating point arithmetic The LP solver implemented inrchoosec does not work well with
floating point types: the code was not written with numericalstability in mind, so very small roundoff error can
change what happens when doing Gaussian elimination, and make a theoretically non-singular matrix become
singular. In fact, in most of the tests I ran some assertions failed in the middle of the algorithm.

To implement a numerically robust LP solver, techniques like matrix factorization must be used to make sure
the algorithm can always follow its course.

Testing simple synthesized code with floating point typesOn the other hand, synthesized code that does not
call a solver can be run without problems with floating point types. This does not mean it always returns correct
results. In particular, deciding whether a problem is maximizable or only feasible and bounded can be very
tricky. I tested the synthesized code with the ScalaDouble type, but also with theSmartFloat type [Darulova
and Kuncak 2011]. In the latter, an interval is maintained atall time in which one can be sure the exact value
lies.

Consider what happens when synthesizing code for the last example of Section 2 (using multiparametric linear
programming). Recall that the exact result for input parameter a = 2 is that the problem is bounded but not
maximizable, with least upper bound46445 ≈ 10.31. However, when synthesizing for the ScalaDouble type, and
running the code with input2, the result isx = 30.5, y = −19.0. The maximal value is2x+ y = 51 which is
much larger than10.31, and also blatantly violates the constraint2x+ y ≤ 42. Thus even in this small example,
numerical imprecisions can lead to catastrophic consequences !

It turns out such a disaster does not happen when using the Fourier-Motzkin method on the same problem. There
is a simple explanation: recall that to solve a LPWS using an LP solver, one needs to add a new variableδ and
maximize it over a related LP, with constraint0 ≤ δ. The result of the LPWS depends on whetherδ = 0, or
δ > 0. Thus even a very small imprecision when computingδ can make it become non-zero. In conclusion, the
code synthesized using multiparametric linear programming is numerically very unstable if the constraint has
strict inequalities, which is not the case for the Fourier-Motzkin method.

Notice that if one synthesizes (still with the multiparametric LP method) the code forSmartFloats, and runs it
with the same input, the output becomes

comparison failed! uncertainty interval: [-2.2786005886354417E-15,

1.834511378785379E-15]

Total time: 159 ms

List([30.49999999999998,30.50000000000002], [-19.000000000000014,-18.999999999999986])

The “comparison failed!” error indicates that it could not be decided what the result of a comparison between
two values was, as their intervals overlapped. Thus it can still be caught that something wrong happened !

5.3 Practical application: a rocket controller

A lot of problems in optimal control theory can be reduced to the solving of a linear program [Zadeh and Walen
1962]. Because control laws are typically implemented in embedded hardware (that sometimes has to work
under real time constraints), it makes sense to try to specialize the LP solver to the problem at hand in order
to generate faster code. In fact, it turns out some of those problems can be written as synthesis problems for
linear rational arithmetic, in the sense of this report [Bemporad et al. 2002]. Typically, the parameters are the
real world conditions, and the variables describe the control law, i.e what the controller should do in response
to those conditions. Code synthesized by a multiparametricLP solver has for example been integrated into a
system to maximize the adhesion of a car tire to the road [Borrelli et al. 2001].
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In this Section, I describe how I used the methods of this report to synthesize code to make a falling rocket land
using the minimal amount of fuel. The problem is also briefly described in both [Bertsimas and Tsitsiklis 1997]
and [Matousek and Gärtner 2006].

5.3.1 Setup

I describe the one-dimensional version of the problem. Consider a rocket initially at positionx0 > 0 that needs
to land at positionx = 0. The rocket has initial velocityv0 and accelerationa012. The rocket is subject to a
gravitational accelerationg < 0, supposed constant. The rocket’s booster can produce an upward acceleration
of up toG > 0 13, but can also produce lower accelerations. If the booster produces an accelerationC during a
time∆T , it is assumedC∆T units of fuel will be used.

The problem is to land while spending the least amount of fuel14.

5.3.2 Approximation as a synthesis problem

Continuous time equations Formally, one wants to find afuel use distribution{D(t) | t ∈ R} and a timeT
minimizing

∫ T

0 D(t)dt under the constraints:

1. 0 ≤ T

2. 0 ≤ D(t) ≤ G

3. v = dx
dt

4. a = dv
dt

5. a(t) = D(t) + g

6. x(t) ≥ 0

7. x(0) = x0

8. v(0) = v0

9. a(0) = a0

10. x(T ) = 0

11. v(T ) = 0

I do not know of an analytic solution to those equations. Theycan however be approximated in discrete time:

Finite discrete time equations Suppose one knows thatT ≤ Tmax. Then one can sample the time axis intoN
pointst0 = 0, t1, ..., tN−1 = Tmax, whereti =

iTmax

N−1 . Using the appropriate units, one can rewrite the problem

above as follows: findD ∈ Rn, andm ∈ Z minimizing
∑m−1

i=0 Di under the constraints

1. 1 ≤ m ≤ N

2. 0 ≤ D ≤ (G,G, ..., G)T

3. xi = vi + xi−1 for i ∈ {1, ..., N − 1}.

4. vi = ai + vi−1 for i ∈ {1, ..., N − 1}.

5. ai = Di + g for i ∈ {1, ..., N − 1}.

12The initial acceleration does not influence the rocket in theory, however it may influence the results given by the discrete-time model.
13G is assumed to stay constant throughout the fall.
14This is essentially what a human player must do in “Lunar Lander”-like video games [Edwards 2009].
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6. x ≥ 0

7. xm−1 = 0

8. vm−1 = 0

Notice that ifm is fixed, the constraints describe a bounded linear program.If m is unknown, one can solve for
the disjunction of the constraints form = 1,m = 2, ...,m = N . In practice,m is not known, but sinceTmax is
an approximate bound on the landing time, one knowsm should be close toN , so only the constraints for the
lastM values ofm will be synthesized.

In conclusion, the problem is a synthesis problem of linear real arithmetic. In an implementation, the variables
can of course be approximated by rationals. The constraintscan easily be simplified so that the only variable is
the vectorD, and the parameters are the initial conditions (i.ex0, v0, a0, G andg).

5.3.3 The controller algorithm

Suppose code for the above problem has been synthesized for afixed number of time samplesN .N denotes the
number of variables in the problem, and should typically be small to make the synthesized code fast (the rocket
is still falling down while the onboard controller is working !). Thus the approximation to the continuous-time
problem may be very poor. To compensate for this fact, the idea is to solve the problem repeatedly as the rocket
is falling down, updating the fuel use distribution on the way.

For example, suppose at time zeroG = 20, g = −10, v0 = a0 = 0, x0 = 100. Call the synthesized code for
those values and obtain a first fuel use distributionD0. The synthesized code took some time to run, so the time
is now t0 > 0. One could use this distribution for the rest of the flight, but what one will do instead is to call
the synthesized code again with parametersG, g, v(t0), a(t0), x(t0). Only while the code is executing willD0

be used as fuel use distribution. Then the new fuel distribution will be used, while the synthesized code will be
called again, and so on.

Typically, the discrete time equations become more accurate as the time before impact gets smaller, so one
expects to have more and more accurate solution as the flight goes on. Moreover, even if there was no
approximation error in the discrete to continuous approximation, there could still be measurement errors or
other unforeseen factors outside the continuous-time model that the method can take into account.

The default fuel use distribution What initial fuel use distribution should be used when the synthesized code
is run for thefirst time ? A simple idea is to setD(t) = 0 for t ≤ tc, andD(t) = G for t ≥ tc, wheretc is the
critical time at which the rocket must brake to land with zerovelocity. It turns outtc can be computed directly
by solving a quadratic equation (the derivation is given in appendix C).

Guessing an impact time The only remaining problem is to find an upper estimate for thelanding timeTmax:
even though the synthesis problem itself does not depend onTmax, its value is needed to convert the parameters
to the right units. Finding a good estimate is important: ifTmax is too small, the problem will become unfeasible.
If it is too large fuel will be wasted to keep the rocket in the air for longer than necessary.

A lower estimate is easy to obtain: for example, one can take the time at which the rocket would crash if the
boosters stayed unused, or the time at which it will land under the default fuel use distribution. Both of those
estimates can be computed by solving a quadratic equation. Unfortunately, I have not found a clever way of
finding a good upper estimate. I ended up implementing an iterative algorithm that starts from a lower estimate
and increase it progressively until the problem becomes feasible.

In the full controller algorithm (Algorithm 2),K andλ are constant that have to be fine-tuned. I useK = 10
andλ = 1.1. In practice, it takes time to find a first estimate, but it can then be re-used by the next calls, so very
few iterations of the while loop are run.
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Algorithm 2 Controller algorithm
1: Find a lower estimateT0, or use the estimate made by a previous call to the controller.
2: Tmax := T0
3: while The problem is not feasible forTmax and less thanK tries have been madedo
4: Tmax := λTmax

5: end while
6: Return the fuel use distribution given by the synthesized code, or the default distribution if the problem is

still unfeasible after theK tries.

Figure 1. Screenshot of the graphical interface for the rocket simulation

As a sanity check, it is also checked at each iteration whether the rocket would crash if one tookD(t) = G for
all t. If this is the case, no more computations are done and this distribution is used.

5.3.4 Implementation and practical results

To test the above algorithm, I implemented a simple simulator displaying the current state of the rocket in a
graphical interface (Figure 1). The initial conditions canbe given on the command line, as well as the synthesis
parameters: the synthesis method, the numberN of sample to take, and the numberM of conjunctions to
consider. I did most of my tests withN = 10, M = 1, synthesizing code that runs a solver at runtime.

The simulation is made such that the rocket still falls down while the the fuel use distribution is computed.
The timeT one simulated second takes in the “real world” can be varied in order to simulate a slower or faster
onboard computer. For example, ifT = 0.5 and it takes one second (on the computer running the simulation)
to compute the fuel use distribution, the rocket would have fallen for2 (simulated) seconds in the meantime.

The variables in the simulation all have the Scala typeDouble, but they are converted to rationals with small
denominator (see Section 5.1.4) when calling the synthesized code.
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Table 1. Performance of therchoosec LP solver on selected Netlib problems (times are in seconds)

Problem Time (phase 1) # of iterations (phase 1) Time (phase 2) # of iterations (phase 2) Total time
itest2 0.1 2 - - 0.1
galenet 0.2 2 - - 0.2
itest6 0.2 2 - - 0.2
afiro 1.4 23 1.0 18 2.4
kb2 5.4 100 4.9 100 10.3

boeing2 298.0 440 347.0 894 645.0

My tests have shown that a rocket controlled by Algorithm 2 manages to land successfully. However, I have
also compared what is spent in that case with the fuel spent ifone only uses the default fuel distribution. In most
of the simulations using the default distribution lead to slightly less or the same amount of fuel being used in
the end. Thus it seems too many approximations are done to make the method useful in practice. However the
simulation is still a good benchmark to test code synthesized by different methods in a “real use” scenario.

5.4 Performance measurement

In this Section, I describe the tests I have run to measure theperformance of the synthesis methods described in
this report and of the synthesized code.

5.4.1 Performance of the simplex solver

To measure the performance of my simplex solver, I used example linear programs publicly-available from the
Netlib repository15. The Netlib collection contains linear programs of practical or theoretical interest donated
by industrial companies or academics16. The size of the constraint matrices for the problems available range
from 10 × 4 to 6331 × 22275. Most problems have more than 100 variables.

My exact solver takes a reasonable time only on the smallest examples, so I decided to use the problemsitest2

(10×4), galenet (9×8), itest6 (12×8), afiro (28×32), kb2 (44×41), andboeing2 (167×143). The first
three are unfeasible problems (I did not find feasible problems of similar size), and the last three are feasible and
bounded. To test my solver, I converted the problem input files to theRChoose language, and ranrchoosec to
synthesize code without parameters.

The time spent by the solver and the number of pivot steps usedfor each problem is summarized in table 1. I
separate the time spent for phase 1 (making the constraint matrix full rank and finding an initial roof) and phase
2 (calling Algorithm 1). The roof LP is the auxiliary linear program one needs to solve to find an initial roof.
It turns out the first three problems can be seen to be unfeasible already at that point, so the solver never enters
phase 2. All the times in this report were measured on a GNU/Linux system with an Athlon 5000+ processor
and 2 Gb of RAM. Note that since I use some datastructures thatdo not behave exactly the same from one run
of the program to another, the number of simplex iterations one obtains can vary from run to run (a different
ordering of the matrix line can lead to a different number of iterations).

One sees that phase 1 takes about half the total solving time.In fact, row-reducing a matrix is slow in my
implementation, whereas one simplex iteration is done relatively quickly. The performance of synthesizing
code calling a solver versus calling a solver directly are discussed in Section 5.4.3. Based on the data above,

15http://www.netlib.org/
16For example, theboeing2 problem used for my benchmark “has to do with flap settings on aircraft for economical operations”
according to the NetlibREADME.
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Table 2. Description of synthesis problems
Problem m n r R s

itest2 5 1 3 3 0.0
galenet 8 6 2 2 0.7
itest6 9 7 1 1 0.8

afiro-feas 28 7 25 9 0.6
afiro 28 7 25 9 0.6
kb2-feas 44 11 30 16 0.0
kb2 44 11 30 16 0.0

Rocket,N = 5 15 4 5 4 0.3
Rocket,N = 10 30 9 5 4 0.7
Rocket,N = 40 120 39 5 4 0.9

one can conjecture that the synthesized code will take abouttwice less time, since phase 1 (and computing the
inverse ofAB in phase 2) is done at synthesis time.

Another observation is that solving LPs exactly is not feasible in practice, except for “small” sizes: theboeing2
problem with about 100 variables shows the limit of my solver, but nowadays LPs with “only” a few thousands
of variables and constraints are considered small [Fourer 2000] . Moreover, my implementation is slow even
compared to otherexactsolvers. For example the solverexlp 17 solvesboeing2 almost instantly on the test
machine.

Another difficulty that arises is that rational numbers may grow in size as the problem gets solved. The final
solution of kb2 has rationals with about 30 decimal digits in their numerator and numerator. Surprisingly,
the solution ofboeing2 has rationals of reasonable size (less than 10 digits for both the numerator and
denominator).

5.4.2 Performance of the synthesis methods

To measure how fast the various methods presented in this report can synthesize code, I parametrized the first
five Netlib problems presented in the previous Section by considering some of their variables as parameters,
and removing some constraints from the unfeasible one to allow feasibility. When an objective function was
specified, both the problem without objective function and the original problem were synthesized. I also
synthesized the rocket controller synthesis problem described in Section 5.3.2 with different numbersN of
samples (withM = 1 as the number of disjunction).

The synthesized problems are described in table 2, and the results are given in table 3. A problem name with
suffix “-feas” means its objective function has been removed. I have calledm,n, r the number of constraint,
variables, and parameters respectively.R denotes the column rank of the matrixF when one writes the problem
as a multiparametric LP.s is defined as the number of zero entries of the constraint matrix (after the change
of coordinate to make it full rank) divided by the total number of elements. This gives an indication of how
sparse the resulting matrix is. Whenever four numbers separated by commas appear, they refer to the result
for each of the synthesis methods: the first number is the result for the “pure” Fourier-Motzkin method as
described in Section 3.4, the second to the Fourier-Motzkinmethod for optimization (Section 4.3), the third to
the method of calling a solver at runtime (Section 4.4), and the last to the multiparametric LP method (Section
4.5). The indicated compiled code size is for code compiled with the Scala compilerwithoutoptimization. The
column “# of regions” gives the number of critical region theparameter space was split into when applying the
multiparametric LP algorithm.

17http://members.jcom.home.ne.jp/masashi777/exlp.html
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Table 3. Performance of synthesis methods (times are in seconds, sizes in kilobytes)
Problem Synthesis time Source code size Compiled code size # of regions
itest2 2, 3, 2, 3 2, 2, 2, 2 8, 8, 10, 7 1
galenet 2, 3, 3, 3 2, 2, 3, 3, 6, 7, 11, 7 4
itest6 2, 3, 3, 3 2, 2, 4, 2 6, 7, 13, 7 1

afiro-feas 6, 5, 4, 20 13, 13, 13, 146 22, 21, 25,? 70
afiro ?,5, 4, 14 -,15, 13, 76 -,27, 25, 53 30
kb2-feas 14, 16, 7, 24 563, 386, 52, 533 ?,414∗, 100, ? 10
kb2 ?,16, 6, 26 -,387, 52, 533 -,414∗, 101, ? 10

Rocket,N = 5 ?,20, 3, 20 -,8, 4, 26 -,18, 12, 21 14
Rocket,N = 10 ?, ?,4, ? -, -, 9,- -, -, 20, - > 3750
Rocket,N = 40 ?, ?,10, ? -, -, 68, - -, -, 95, - > 3750

Whenever a time is indicated as “?”, this means the program was aborted after it ran for more than 15 minutes.
A compiled code size of “?” indicates that the compiler crashed when compiling the code. This is due to a limit
in the size of a method in Java18. A workaround it to split the synthesized method into several smaller ones,
but I have not implemented it: it is not a priori obvious when amethod becomes too large or how to split it.
Likewise, a compiled code size followed by a star (∗) means the code was correctly compiled, but cannot be run
because of ajava.lang.ClassFormatError: Invalid method Code length exception.

Note that the multiparametric LP code uses a default maximizer even for problems without objective function.
If this is not done, the number of regions becomes115 for apiro-feas, and21 for kb2-feas .

Observe that the “pure” Fourier-Motzkin method cannot in practice be used for non-trivial optimization
problems, and the improved version must be preferred instead.

As should be expected, calling a solver at runtime produces smaller code for non-trivial problems than the
alternatives. The tradeoff in synthesized code performance will be discussed in the next Section. Code size for
the two version of Fourier-Motzkin elimination are similar(the only difference between the two methods when
there are no objective vector is that for the improved one, a change of coordinate is first done to make the matrix
A full rank). Notice that the change of coordinate reduced code size inkb2-feas. Despite theoretical advantages
(i.e better computational complexity), in practice it seems that multiparametric LP is more or less on par with
the Fourier-Motzkin method as far as compiled code size is concerned.

The parametrized version ofapiro andkb2 can be observed to have very few decision regions. This could
partially be explained by the fact that their parameter matrix F has a relatively low rank (compared to their
number of parameters).

On the other hand it seems the rocket synthesis problems are much harder than their Netlib counterpart for
a comparable size, as they can be synthesized only using the simplex method as soon as their size becomes
reasonable. I have not found a satisfactory explanation forthis fact (sparsity does not seem to influence the
results much).

5.4.3 Performance of the generated code

Since the Netlib problems were not specifically tailored forsynthesis, it is difficult to know how to meaningfully
test the resulting generated codes. Hence I chose to only test the generated code for the Rocket problems. The
results are given in table 4.

18The exact exception isch.epfl.lamp.fjbg.JCode$OffsetTooBigException: offset too big to fit in 16 bits. See
https://issues.scala-lang.org/browse/SI-1133 for a related bug.
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Table 4. Performance of synthesized code (times are in seconds)
Problem Time dilatation # of calls Avg solving time Max solving time

Rocket,N = 5, FM 1 810 0.002 0.10
Rocket,N = 5, MPLP 1 880 0.001 0.07
Rocket,N = 5, simplex 1 154, 347, 661 0.03, 0.003, 0.002 0.41, 0.06, 0.12
Rocket,N = 10, simplex 2 130, 378, 4227 0.09, 0.02, 0.002 0.23, 0.66, 0.32
Rocket,N = 40, simplex 8 6, 23, 4254 7.03, 2.29, 0.02 8.37, 3.29, 2.01

The code was tested in a rocket simulation with initial conditionsx0 = 500, g = −10, G = 20, v0 = a0 = 0.
The “time dilatation” column indicates how many real seconds elapsed during one simulated second. The “# of
calls” column indicates the number of times the code was called during the simulation, and the next columns
give the average and maximum time it took to terminate. As indicated in the previous Section, I could only use
the Fourier-Motzkin and multiparametric LP synthesis methods when takingN = 5. ForN = 10 andN = 40,
only calling a solver at runtime ended-up being feasible. The three numbers in each column of “simplex” lines
indicate the result when, in order

1. A solver was called directly (i.e no synthesis was done at all).

2. Code calling a solver at runtime was synthesized, but the solver does not remember the previous optimal
roof.

3. Code calling a solver at runtime was synthesized, and the solver remembers the previous optimal roof.

The maximal solving times are not to be taken too literally: they can vary quite a lot from one run to another.

According to the first two lines it seems the MultiparametricLP method generated better code than the Fourier-
Motzkin method, but more results are needed to judge that fact more carefully. One can also see that calling a
solver at runtime (with all the proper optimizations) isnot slower on average than code synthesized using other
methods. The maximum solving time seems larger, however.

The results of the last three lines show that synthesizing the code calling the solver pays off: because phase 1 is
done at compile-time, one obtains a large improvement for the small problems, and an improvement of about a
factor 3 for the large one. Remembering the last optimal roofleads to dramatic improvements for that particular
synthesis problem. Indeed, the rocket’s position, velocity and acceleration do not change much from one call to
the next, hence the optimal basis will not vary much. One seesimprovements of one or two orders of magnitudes
in the average solving time. Still, this optimization cannot do anything to improve the maximal solving time.

6. Conclusion and possible extensions

As the content of this report shows, I have successfully implemented several synthesis methods for linear rational
arithmetic. It seems that calling an LP solver at runtime becomes the only viable solution as the constraint
formula gets larger. Some precomputations can be done at synthesis-time, and it may still be possible to partially
evaluate the simplex algorithm more aggressively.

More testing is needed to really evaluate the relative performance of the various methods, in particular it is still
not clear how calling a solver at runtime compares to code synthesized via multiparametric linear programming
or Fourier-Motzkin elimination for large problems (whenever those methods terminate in a reasonable amount
of time).

Even though it must be considered only as a proof of concept, the rocket controller example presented in Section
5.3 shows synthesis has applications to real world problems.
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In the rest of this Section, I present some possible extensions to the work presented in this report.

Better elimination of quantifiers and negations Because they do not occur often in practice, I did not give
much thought to the handling of quantifiers and negations; they are currently eliminated using the Fourier-
Motzkin method. However, the results of appendix D suggeststhere may exist more efficient ways, at least for
some special cases. For example, one should keep a negation of the form¬(a = b) as it is instead of introducing
disjunctions by rewriting it asa < b ∨ b < a.

Better choice of default synthesis methodOne could modify rchoosec to try various synthesis method in
order, and return the result of the best one that succeeded. For example, it could first try the pure Fourier-Motzkin
method for one minute, then if it still hasn’t succeeded abort and try the improved Fourier-Motzkin method for
one minute, and so on. This could of course also be parallelized.

Improving the simplex solver Writing a good simplex solver is hard: thousands of free or commercial ones
have been written, and no “canonical” implementation has emerged19. Still, it would be interesting to know
how far one can go with an exact solver written in Scala. Of course, one could try improving the solver so that
it is more or less numerically stable, i.e so that it can also handle floating point inputs. Another option would be
to make rchoosec simply call an external solver.

Integration into a compiler Currently, integrating synthesized code into a larger program is cumbersome: one
has to write theRChoose file, synthesize it, then add an import statement in the larger program. Thus it would be
a good idea to write a Scala compiler plugin to make the integration seamless, as was done in Comfusy [Kuncak
et al. 2010]. Given the trouble I had when compiling non-trivial generated code using the Scala compiler, one
may also consider generating code in other languages that have more robust compilers available, like C.

Improving the rocket controller As explained in Section 5.3, I have not found an elegant way toestimate a
good upper bound to the impact time. One idea is to try to generate some smooth, increasing, fuel use distribution
and use the resulting landing time as an estimate. More generally, it may be possible to solve the continuous
time equations given in 5.3.2, or at least to find some “good” distribution that works well in practical cases. For
example, it would be interesting to know how close to the optimum the “all or nothing” distribution used as
default in the current controller algorithm is.

On a different register, currently nothing special is done if there is not enough fuel to use a given distribution.
However, one could write a linear program to minimize the speed on impact and add the additional fuel
constraint. This could then be integrated into the controller algorithm.

Another fun improvement would be to implement the possibility of taking manual control of the rocket at any
time during the simulation. This would make the experience more interactive.

Mixed rational/integer synthesis A natural extension is to restrict some of the variables to beintegers. The
problem then becomes much harder (integer programming is NP-hard), but solvers still exists, and a quantifier
elimination procedure for the theory can probably also be found.

Extending the RChoose syntaxAs explained in appendix D, introducing disjunctions in theconstraint
formula can make the synthesis problem much harder. One can try to avoid that the user uses disjunctions
by introducing some commonly-used functions likemax, min or abs in theRChoose language. Clearly, those
constructs do not add more power to the language, because e.gabs(x) can always be eliminated by replacing
it with a new variabley, adding the constraints(y = x ∨ y = −x) ∧ y ≥ 0. Similarly, one can write
max(x, y) = −min(−x,−y) = |x−y|+x+y

2 . Moreover a variablex can still be restricted to{0, 1} with the

19 [Fourer 2000] has more information on available LP solvers.
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constraint|2x − 1| = 1, so the corresponding decision problem stays NP-hard. However, in a lot of practical
cases, one can rewrite the constraint as a linear program, i.e without introducing any disjunction.

For example, the problems of finding the largest ball contained in a polyhedron, or the best fitting line according
to the 1-norm fall in this category [Matousek and Gärtner 2006]. In the rocket controller example, one may want
to minimize the maximal acceleration rather than the amountof fuel spent (although it is clear in that case that
the solution is simply a uniform fuel distribution), and it turns out this can also be rewritten as a linear program.

Thus it would be interesting to integrate some re-writing rules formax, min andabs to rchoosec , so that if
an equivalent linear program exists it is found (a simple example of such a rewriting rule is that the constraint
max(x, y) ≤ U is equivalent tox ≤ U ∧ y ≤ U ).
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J. Matousek and B. Gärtner.Understanding and using linear programming. Springer, 2006.

D. Monniaux. The pitfalls of verifying floating-point computations.ACM Transactions on Programming Languages and
Systems, 30:1–41, 2007. doi: 10.1145/1353445.1353446.

J. Robinson. Definability and decision problems in arithmetic. The Journal of Symbolic Logic, 14(2):98–114, 1949.

A. Schrijver.Theory of linear and integer programming. Wiley, 1986.

M. I. Schwartzbach. Lecture Notes on Static Analysis. 2008.URL http://www.brics.dk/~mis/static/static.pdf.

32 2011/6/10



D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial
time. InACM Symposium on Theory of Computing, pages 296–305, 2001. doi: 10.1145/380752.380813.

W. A. Stein et al. Sage mathematics software, 2011. URLhttp://www.sagemath.org.

A. Tarski. A decision method for elementary algebra and geometry. RAND Corporation, 1951.

P. Tøndel, T. Johansen, and A. Bemporad. Computation and approximation of piecewise affine control laws via binary
search trees. InDecision and Control, volume 3, pages 3144–3149, 2002.

L. A. Zadeh and L. Walen. On optimal control and linear programming. IEEE Transactions on Automatic Control, 7:
45–46, 1962.

Appendices

A. Grammar for the RChoose language

Goal → RChoose( <IDENTIFIER> (, <IDENTIFIER> )∗)([ AExpr])?{ BExpr} <EOF>

BExpr → BExpr|| BExpr

BExpr → BExpr&& BExpr

BExpr → ! BExpr

BExpr → AExpr(< | <= | ==) AExpr

BExpr → ( forall | exists)( <IDENTIFIER> , BExpr)

BExpr → ( BExpr)

BExpr → true | false

AExpr → AExpr(+|− |/|∗) AExpr

AExpr → ( AExpr)

AExpr → <IDENTIFIER>

AExpr → <INTEGER>

• <IDENTIFIER> represents a sequence of letters, digits and underscores, starting with a letter and which is
not a keyword. Identifiers are case-sensitive.

• <INTEGER> represents a sequence of decimal digits, with no leading zeros (the sequence can have arbitrary
length).

• <EOF> represents the special end-of-file character.

Note that a file respecting this grammar may still not be a valid RChoose file, e.g because it has an expression
of the formx*y: theAExprnodes should be linear arithmetic expressions.

B. Bounds on the denominator of a rational midpoint

Lemma 7. Let x, y ∈ R, and supposex ≤ y − 1. Then⌈x⌉ ≤ ⌊y⌋.

Proof. Clearly,⌈x⌉ ≤ y. Because⌈x⌉ is an integer, the result follows.
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Theorem 4. Let p1, p2 ∈ Z≥0, q1, q2 ∈ Z>0, such thatgcd(p1, q1) = gcd(p2, q2) = 1 and p1
q1
< p2

q2
. Let q be

the smallest integer for which there is ap ∈ Z>0 such that

p1
q1
<
p

q
<
p2
q2

(27)

Thenq satisfies

⌈

q1 + q2
p2q1 − p1q2

⌉

≤ q ≤

⌈

q1q2 + q1 + q2
p2q1 − p1q2

⌉

(28)

Proof. Notice first that the two bounds are always well defined, asp1
q1
< p2

q2
implies thatp2q1 − p1q2 > 0.

Moreover, it has already been explained in Section 5.1.4 that (27) holds if and only ifq satisfies

⌈

p1q + 1

q1

⌉

≤

⌊

p2q − 1

q2

⌋

(29)

Thus

0 ≥

⌈

p1q + 1

q1

⌉

−

⌊

p2q − 1

q2

⌋

≥
p1q + 1

q1
−
p2q − 1

q2

=
p1q2q + q2 − p2q1q + q1

q1q2
=
q(p1q2 − p2q1) + q1 + q2

q1q2

Rearranging terms, one obtains the lower bound in (28). To check the upper bound, observe that, as a
consequence of Lemma 7, asufficientcondition for (29) to hold is

p1q + 1

q1
≤
p2q − 1

q2
− 1

Rearranging terms, one obtains

q ≥
q1q2 + q1 + q2
p2q1 − p1q2

Any q satisfying this bound satisfies (27). Thus the smallest suchq is at most
⌈

q1q2+q1+q2
p2q1−p1q2

⌉

. This completes the
proof.

C. Finding the critical braking time

C.1 Description of the problem

A rocket is falling from positionx0 > 0 with initial velocity v0, at constant acceleration−g. One wants to brake
with accelerationG > g, starting at some critical timetc ≥ 0, until landing, such that one arrives at position0
with velocity 0. One wants to findtc and the time of arrivalta at whichx(ta) = 0 andv(ta) = 0.
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C.2 Solution

Whent ≤ tc, the rocket’s position is described by the equation

x(t) = −
1

2
gt2 + v0t+ x0 (30)

Similarly, whent > tc, the position is given by

x(t) =
a

2
(t− tc)

2 + (t− tc)vtc + xtc (31)

Wherea := G − g, andxtc := x(tc), vtc := v(tc) = −gtc + v0 can be obtained directly from (30). Deriving
(31), one obtains that fort ≥ tc

v(t) = a(t− tc) + vtc (32)

Hencev(ta) = 0 impliesa(ta− tc)+ (−gtc+ v0) = 0, i.e tc =
v0+ata
a+g

= v0+(G−g)ta
G

. Plugging this expression
for tc into (31) and settingt = ta, one obtains a quadratic polynomialx(ta) := αt2a + βta + γ in ta. To avoid
dying of boredom, I computed the coefficientsα, β, γ using SAGE [Stein et al. 2011], and obtained

α =
g2

2G
−
g

2

β = −
gv0
G

+ v0

γ =
v20
2G

+ x0

Solving the quadratic equationx(ta) = 0, and taking the positive solution, one can obtain a value forta, and
thus a value fortc.

As a sanity check, supposev0 = 0, G = 2g. Then one obtainsα = g2

4g − g
2 = − g

4 , β = 0, γ = x0. Solving
the equations, it turns outx(tc) =

x0

2 , which confirms the intuition that the braking should occur exactly in the
geometric middle of the fall.

D. Efficiency of decision for linear rational arithmetic

In this appendix, I discuss the computational efficiency of deciding various versions of linear rational arithmetic.

Most of the results can be generalized to other ordered fields, but the fact that there is a polynomial time
algorithm to solve linear programs is specific to the rationals, so Theorem 7 may not hold for other fields.

Theorem 5. Deciding a formula of linear rational arithmetic is NP-Hard.

Proof. 0-1 integer programming (where the variables are constrained to be either zero or one) is well known to
be NP-Hard [Schrijver 1986]. Any problem of 0-1 integer programming with variablesx1, ..., xn and constraint
Ax ≤ b can be expressed in rational linear arithmetic with the formula

∃x1∃x2...∃xnAx ≤ b ∧ ((x1 = 0) ∨ (x1 = 1) ∧ ... ∧ (xn = 0 ∨ xn = 1))

Therefore deciding a formula of linear rational arithmeticis at least as hard as 0-1 integer programming, which
is NP-Hard.
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Disallowing disjunctions does not fully solve the problem:

Theorem 6. Deciding a formula of linear rational arithmetic without disjunctions is NP-Hard.

Proof. The constraints of the form(xi = 0 ∨ xi = 1) in the proof of Theorem 5 can be equivalently expressed
without disjunction as

¬(¬(xi = 0) ∧ ¬(xi = 1))

The problem was that negating a conjunction still results ina disjunction. What is needed is to force the formula
to have anegation-normal formwithout disjunctions. One can then suppose the formulaφ to be of the form

φ = Q1x1, ..., Qnxnψ

with

ψ = (ψ1 ∧ ψ2... ∧ ψm)

WhereQi ∈ {∀,∃}, and eachψi[x1, ..., xn] is in one of the three following forms:

ψi = f(x1, ..., xn) ≤ Ci

ψi = f(x1, ..., xn) < Ci

ψi = f(x1, ..., xn) 6= Ci

with f a linear function,Ci ∈ Q.

The next Theorem shows that imposing this restriction is enough.

Theorem 7. Deciding a formulaφ of linear rational arithmetic that has a negation-normal form without
disjunctions can be done in polynomial time.

To prove the Theorem, I first need several lemmas.

Lemma 8. If Qn = ∀, then eitherφ is equivalent toQ1x1, ..., Qn−1xn−1ψ or φ is false. Which of these
alternatives is true can be decided in polynomial time.

Proof. If xn does not appear in anyψi, the first alternative is true. Otherwise, once all the variablesx1, ..., xn−1

are fixed, it is clearly always possible to find anxn that violates one of theψis in which it appears, soφ is
false.

Lemma 9. SupposeQk = ∀, Qk+1 = ... = Qn = ∃. Then either∀x1...∀xk∃xk+1...∃xnψ is true,φ is
equivalent toQ1x1...Qk−1xk−1Qk+1xk+1...Qnxnψ[0/xk], orφ is false. Which of these alternatives is true can
be decided in polynomial time.

Proof. LetΨ[x1, ..., xk] := ∃xk+1...∃xnψ. If the first alternative is not true, this means there existsy1, ..., yk ∈
Q such thatΨ[y1/x1, ..., yk/xk] is false. Apply Fourier-Motzkin elimination toψ to eliminate the variables
xk+1, ..., xn. The result is a formulâψ[x1, ..., xk] such thatΨ ≡ ψ̂. If xk does not appear in̂ψ, the second
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alternative is true. Otherwise,φ is equivalent toQ1x1...Qk−1xk−1∀xkψ̂ , andxk appears in̂ψ. By the proof of
Lemma 8,φ must be false.

An efficient way to test whetherxk appear inψ̂ is to first find valuesz1, ..., zk−1, zk+1, ..., zn such that

ψ[z1/x1, ..., yk/xk, zk+1/xk+1, ..., zn/xn]

is true (if no such values exists, this means∃x1, ...,∃xk−1∀xk∃xk+1...∃xnψ is false, so definitelyφ is false as
well), then check whether∀xkΨ[z1/x1, ..., zk−1/xk−1] is true. If it is false, then̂ψ must containxk. If it is true,
it cannot contain it. The proof of Theorem 7 explains how to dothese operations in polynomial time.

Proof sketch for Theorem 7.lemmas 8 and 9 show one can assume without loss of generality thatQ1 = ... =
Qr = ∀, andQr+1 = ... = Qn = ∃ for somer.

I will describe only what happens in two special cases:

1. All the quantifiers are existential, and the only relations used are≤ and 6=

2. Both types of quantifiers are used, but the only relation used is≤.

All throughout the proofs I will use the fact that feasibility of a linear program can be decided in polynomial
time [Schrijver 1986]. The ideas presented for those cases should carry over to the general case. Notice for
example that if the only quantifiers are existential, and no6= appear, then the problem is equivalent to deciding
whether a LPWS has a solution. As shown in Section 4.4.2, thisis essentially equivalent to solving a linear
program, which can be done in polynomial time.

Finally, Corollary 1 suggests it should not be too difficult to adapt the methods presented below if one
additionally wants to maximize some objective function.

D.1 Solving a LP with negations

The first case is equivalent to deciding the feasibility of a linear programAx ≤ b with additional constraints
c1x 6= d1 ∧ ...cmx 6= dm for some matrixC and vectord. Let H1, ...,Hm be the hyperplanes defined as
Hi := {x | cix = di}, and letP := {x | Ax ≤ b}. Then one wants to find a pointx∗ in P −

⋃m
i=1Hi. Such a

point exists if and only ifP 6⊆
⋃m

i=1Hi i.e if and only ifP ∩ (
⋃m

i=1Hi) 6= P .

To findx∗ (if it exists), first definex∗i to be a point inP −Hi. Such a point exists if and only if one of the sets
{x | Ax ≤ b ∧ cix < di}, {x | Ax ≤ b ∧ cix > di} is non-empty, which can be checked by solving the two
corresponding LPWS. I claimx∗ exists if and only ifx∗1, ..., x

∗
m exists. To see this, define inductivelyy1 := x∗1,

and

yk :=

{

yk−1 if ckyk−1 6= dk
λyk−1+(1−λ)x∗

k

2 otherwise

Where0 < λ ≤ 1 must be chosen sufficiently small, so thatciyk 6= di for all i ∈ {1, ..., k − 1}. This is always
possible, as there are only finitely many hyperplanes, but infinitely many choices forλ. I show by induction
thatyk ∈ P −

⋃k
i=1Hi from which it will follow that x∗ = ym is a solution. The base case follows from the

definition ofx∗1. For the induction step, observe first that becauseP is convex,yk−1 ∈ P (by induction), and
x∗k ∈ P (by construction),yk ∈ P . The fact thatyk /∈ ∪k

i=1Hi also follows from its construction.

To find out whether eachx∗i exists, one needs to solve at most2m LPWS, each of which can be solved in
polynomial time, so the initial constraint can also be decided in polynomial time.
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D.2 Solving a quantified LP

The second case is equivalent to deciding when a multiparametric linear programAx ≤ w+FΘ (x ∈ Qn, A ∈
Qm×n, F ∈ Qm×r,Θ ∈ Qr, w ∈ Qm) is feasible forall values ofΘ. This is the case if and only if the dual

min{(w + FΘ)T y : AT y = 0, y ≥ 0} (33)

is feasible and bounded for all parameter values ofΘ. Feasibility of the dual does not depend onΘ, and can be
checked in polynomial time by solving a linear program. If the dual is feasible, the only thing that can happen
is that it is unbounded. This is the case if and only if there existsd ∈ Qm such that

ATd = 0, d ≥ 0 (34)

and for someΘ∗, (w + FΘ∗)Td < 0 (because if such ad exists,λd is also feasible for arbitrarily large
values ofλ). Thus for (33) to always be bounded, one needs that for allΘ and alld satisfying (34),CΘ,d :=
(w + FΘ)Td ≥ 0. From the special case whereΘ = 0, it follows thatwTd ≥ 0.

Moreover, suppose that for someΘ, (FΘ)Td > 0. Then for someλ > 0 sufficiently large, one has that
(w + F (−λ)Θ)T d < 0. This implies that(FΘ)T d = 0, for all Θ, i.ed is in the orthogonal complementF⊥ of
F . By the fundamental theorem of linear algebra, this is equivalent to saying thatd ∈ kerF T .

From the above discussion, it follows that (33) is unboundedfor someΘ∗ if and only if there exists ad ∈ Qm

that does not satisfy the conditions above, i.e such that

ATd = 0 ∧ d ≥ 0 ∧ (dTw < 0 ∨ F T
1 d 6= 0 ∨ F T

2 d 6= 0 ∨ ... ∨ F T
md 6= 0) (35)

The existence of such ad can be checked by solving one LPWS andm LPs with negations, which can be done
in polynomial time by the result of the previous Section.
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