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Introduction

Theorem (Morley, 1965)

A countable first-order theory categorical in some uncountable
cardinal is categorical in all uncountable cardinals.

The proof led to the development of stability theory which has had
a large impact, both inside and outside model theory.

Shelah conjectured the following generalization to non-elementary
classes:

Conjecture (Shelah, 1970’s)

An Lω1,ω-sentence categorical in some λ ≥ iω1 is categorical in all
λ′ ≥ iω1 .

This has fueled a lot of research, with thousand of pages of
approximation, but is still open.
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Introduction

A key notion on Morley’s proof is that of a saturated model. Part
of Morley’s proof shows:

Theorem (Morley, 1965)

Let T be a countable first-order theory and let λ > ℵ0. If T is
categorical in λ, then the model of cardinality λ is saturated.

In this talk, we will generalize this step to Lω1,ω and more generally
to AECs.
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Abstract elementary classes

An AEC is a pair K = (K ,≤K), where K is a class of structures in
a fixed vocabulary τ(K) and ≤K is a partial order on K satisfying
some of the basic category-theoretic properties of (Mod(T ),�).

For example, K is closed under unions of ≤K-increasing chains and
satisfies the downward Löwenheim-Skolem-Tarski theorem. More
precisely:

There exists a (least) cardinal LS(K) ≥ |τ(K)|+ ℵ0 such that for
any M ∈ K and any A ⊆ |M|, there is M0 ≤K M containing A with
‖M0‖ ≤ |A|+ LS(K).

Examples include (Mod(T ),�) (where LS(K) = |T |),
(Mod(ψ),�Φ) (where LS(K) = |Φ|+ |τ(Φ)|+ ℵ0), and more
generally classes of models of Lλ+,ω(Q) sentences.
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The monster model

In this talk, I will assume that the AEC satisfies amalgamation,
joint embedding, and arbitrarily large models.

In this case (imitating the Fräıssé construction) one can build a
class-sized model C. Such that:

1. C is universal: For M ∈ K, there is a K-embedding f : M → C
(i.e. f : M ∼= f [M] and f [M] ≤K C).

2. C is model-homogeneous: For M ≤K C and M ≤K N, there is
f : N −→

M
C.

We call C the monster model. We say that K has a monster model
if it has amalgamation, joint embedding, and arbitrarily large
models.
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Types

From now on, fix an AEC K with a monster model. Assume every
object we work with lives inside the monster model.

Definition

Let gtp(a/M) (the Galois type of a over M) be the orbit of a
under automorphisms of C fixing M. Naturally define what it
means to realize a type, restrict a type, etc.



Saturation and homogeneity

Let λ > LS(K) and let M ∈ K≥λ.

Definition

1. M is λ-saturated if for any M0 ∈ K<λ with M0 ≤K M, any
(Galois) type over M0 is realized in M.

2. M is λ-model-homogeneous if for any M0 ∈ K<λ with
M0 ≤K M, M is universal over M0 (i.e. any M ′0 ≥ M0 with
‖M ′0‖ = ‖M0‖ embeds into M over M0).

Lemma (“model-homogeneous = saturated”, Shelah)

M is λ-model-homogeneous if and only if M is λ-saturated. In
particular, there is at most one saturated model of a given size.
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Main theorem

Theorem (V.)

Let K be an AEC with a monster model and let λ > LS(K). If K is
categorical in λ, then the model of cardinality λ is (Galois)
saturated.

By essentially Morley’s proof, such a K is stable in every µ < λ.
Thus when λ is regular, this is easy (observed by Shelah in
Sh:394). Baldwin asked whether this was true when λ is singular.

Shelah (2009): yes if λ = ℵλ.

Note: Morley’s proof shows that K is stable in λ. However there is
an example (Hart-Shelah, Baldwin-Kolesnikov) of an
Lω1,ω-sentence with a monster model categorical in ℵ0, . . . ,ℵn but
unstable in ℵn (hence not categorical in ℵn+1).
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Why bother?

The real goal behind solving such questions is to develop a
superstability theory for AECs.

Such a theory should in particular connect:

1. The behavior of forking.

2. The behavior of saturated models.

Another application of the superstability theory of AECs:

Theorem (V.)

A universal Lω1,ω sentence that is categorical in some λ ≥ iiω1
is

categorical in all λ′ ≥ iiω1
.
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Splitting-like independence

Definition (Shelah)

For M ≤K N, p ∈ gS(N) λ-splits over M if there exists
N1,N2 ∈ Kλ such that M ≤K N` ≤K N for ` = 1, 2 and
f : N1

∼=M N2 such that f (p � N1) 6= p � N2.

Definition

An AEC K (with a monster model) is λ-superstable if λ ≥ LS(K),
K is stable in λ, and K has no long splitting chains in λ: for any
δ < λ+, any 〈Mi : i ≤ δ〉 increasing continuous with Mi+1

universal over Mi , any p ∈ gS(Mδ), there exists i < δ such that p
does not λ-split over Mi .

It turns out that for a first-order T , T is λ-superstable if and only
if T is superstable and stable in λ.
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Limit models

By the “model-homogeneous = saturated” lemma, any two
saturated models are isomorphic.

Sometimes, we will want to work in a single cardinal only. We
attempt to replace saturated models with limit models:

Definition (Shelah)

Let K be an AEC with a monster model. Let λ ≥ LS(K) be such
that K is stable in λ. Let M0 ≤K M both be in Kλ and let δ be a
limit ordinal. We say that M is (λ, δ)-limit over M0 if there exists
〈Ni : i ≤ δ〉 increasing continuous with M0 = N0, M = Nδ, and
Ni+1 universal over Ni for all i < δ.



Uniqueness of limit models

Question

If M1, M2 are respectively (λ, δ1), (λ, δ2)-limit over M0, do we
have that M1

∼=M0 M2?

The answer is yes if cf(δ1) = cf(δ2) (do a back and forth
argument).

If the answer is yes, then the limit model will be saturated (when
λ > LS(K)).

Uniqueness of limit models is closely related to unions of chains of
λ-saturated models being λ-saturated.

For T a first-order theory, limit models are unique if and only if T
is superstable. If T is stable, limit models of length at least κr (T )
will be isomorphic.
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When is an AEC superstable?

Theorem (Shelah-Villaveces)

Let λ ≥ LS(K). If K is categorical in some cardinal strictly above
λ, then K is λ-superstable.

There are some other criterias involving tameness (e.g. in this case,
stability on a tail implies superstability).



When does superstability imply the uniqueness of limit
models?

Question

If K is λ-superstable, are limit models of cardinality λ unique?

Theorem (VanDieren)

If K is λ-superstable and splitting has λ-symmetry, then limit
models of cardinality λ are unique.

Theorem (V.)

Let λ ≥ LS(K). If K is categorical in some cardinal strictly above
λ, then splitting has λ-symmetry.



When does superstability imply the uniqueness of limit
models?

Question

If K is λ-superstable, are limit models of cardinality λ unique?

Theorem (VanDieren)

If K is λ-superstable and splitting has λ-symmetry, then limit
models of cardinality λ are unique.

Theorem (V.)

Let λ ≥ LS(K). If K is categorical in some cardinal strictly above
λ, then splitting has λ-symmetry.



When does superstability imply the uniqueness of limit
models?

Question

If K is λ-superstable, are limit models of cardinality λ unique?

Theorem (VanDieren)

If K is λ-superstable and splitting has λ-symmetry, then limit
models of cardinality λ are unique.

Theorem (V.)

Let λ ≥ LS(K). If K is categorical in some cardinal strictly above
λ, then splitting has λ-symmetry.



Theorem (V.)

Let λ ≥ LS(K). If K is categorical in some cardinal strictly above
λ, then splitting has λ-symmetry.

Proof sketch.

If symmetry fails, then one can build a sequence 〈āi : i < λ+〉
witnessing a certain order property (this comes from a joint paper
with Monica VanDieren).

Using categoricity, one then embeds this sequence inside the
Ehrenfeucht-Mostowski model generated by λ+. One can then use
a ∆-system argument (due to Shelah) to get an “EM-indiscernible”
subsequence 〈āi : i ∈ I 〉 with I ⊆ λ+ of size λ+.

This sequence can be extended to any arbitrary linear order, hence
will generate many types, contradicting stability below the
categoricity cardinal.
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Solvability

Definition (Superlimit, Shelah)

M ∈ Kλ is superlimit if it is universal in Kλ and whenever
〈Mi : i ≤ δ〉 is increasing continuous with Mi

∼= M for all
i < δ < λ+, then Mδ

∼= M.

Definition (Solvability, Shelah)

K is λ-solvable if there is an blueprint Φ of size LS(K) such that
for every linear order I of size λ, EMτ (I ,Φ) is superlimit.

The proof of the main theorem generalizes to show that the
superlimit model of size λ is saturated in case K is λ-solvable.
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Shelah’s eventual solvability conjecture

Conjecture (Shelah)

If K is solvable in some high-enough cardinal, then (for some µ),
K≥µ is solvable in all high-enough cardinals.

Theorem (V.)

If K has a monster model, solvability transfers down.

Theorem (Grossberg-V.)

A first-order theory T is solvable (in some λ > |T |) if and only if it
is stable below λ and superstable. In fact, if K is an LS(K)-tame
AEC with a monster model, solvability in some λ > LS(K) implies
solvability in all λ′ ≥ iω+ω(LS(K)).
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