Superstability in abstract elementary classes

Sebastien Vasey

Carnegie Mellon University

March 4, 2017 Northeast Regional Model Theory Days City University of New York

Theorem (Shelah)

Let T be a first-order theory. The following are equivalent:

- 1. T is stable in all $\lambda \ge 2^{|T|}$.
- 2. T is stable and $\kappa(T) = \aleph_0$.
- 3. T has a saturated model in every cardinal $\lambda \ge 2^{|T|}$.

Theorem (Shelah)

Let T be a first-order theory. The following are equivalent:

- 1. T is stable in all $\lambda \ge 2^{|T|}$.
- 2. T is stable and $\kappa(T) = \aleph_0$.
- 3. T has a saturated model in every cardinal $\lambda \ge 2^{|T|}$.

Theorem (Shelah)

Let T be a stable first-order theory and let $2^{|T|} \leq \lambda < \lambda^{<\lambda}$. The following are equivalent:

- 1. T is stable in λ .
- 2. $\lambda = \lambda^{<\kappa(T)}$.
- 3. T has a saturated model of cardinality λ .

Thus the following are tightly connected (at least for first-order theories):

- 1. The stability spectrum.
- 2. The behavior of forking.
- 3. The behavior of saturated models.

Thus the following are tightly connected (at least for first-order theories):

- 1. The stability spectrum.
- 2. The behavior of forking.
- 3. The behavior of saturated models.

Question

Can we generalize these results to non-elementary contexts?

Thus the following are tightly connected (at least for first-order theories):

- 1. The stability spectrum.
- 2. The behavior of forking.
- 3. The behavior of saturated models.

Question

Can we generalize these results to non-elementary contexts?

Why would we want to do that? To apply the theory to more examples and better understand first-order superstability.

Two applications

Theorem (V.)

Let ψ be a universal $\mathbb{L}_{\omega_1,\omega}$ -sentence. If ψ is categorical in *some* $\lambda \geq \beth_{\beth_{\omega_1}}$, then ψ is categorical in *all* $\lambda' \geq \beth_{\beth_{\omega_1}}$.

Two applications

Theorem (V.)

Let ψ be a universal $\mathbb{L}_{\omega_1,\omega}$ -sentence. If ψ is categorical in *some* $\lambda \geq \beth_{\beth_{\omega_1}}$, then ψ is categorical in *all* $\lambda' \geq \beth_{\beth_{\omega_1}}$.

Theorem (V.)

Let **K** be an AEC with a monster model. Let $\lambda > LS(\mathbf{K})$. If **K** is categorical in λ , then the model of cardinality λ is (Galois) saturated.

Saturation and homogeneity

From now on, assume that **K** is an AEC with a monster model. Let $\lambda > LS(\mathbf{K})$ and let $M \in \mathbf{K}_{>\lambda}$.

Definition

- 1. *M* is λ -saturated if for any $M_0 \in \mathbf{K}_{<\lambda}$ with $M_0 \leq_{\mathbf{K}} M$, any (Galois) type over M_0 is realized in *M*.
- 2. *M* is λ -model-homogeneous if for any $M_0 \in \mathbf{K}_{<\lambda}$ with $M_0 \leq_{\mathbf{K}} M$, *M* is universal over M_0 (i.e. any $M'_0 \geq M_0$ with $\|M'_0\| = \|M_0\|$ embeds into *M* over M_0).

Saturation and homogeneity

From now on, assume that **K** is an AEC with a monster model. Let $\lambda > LS(\mathbf{K})$ and let $M \in \mathbf{K}_{>\lambda}$.

Definition

- 1. *M* is λ -saturated if for any $M_0 \in \mathbf{K}_{<\lambda}$ with $M_0 \leq_{\mathbf{K}} M$, any (Galois) type over M_0 is realized in *M*.
- 2. *M* is λ -model-homogeneous if for any $M_0 \in \mathbf{K}_{<\lambda}$ with $M_0 \leq_{\mathbf{K}} M$, *M* is universal over M_0 (i.e. any $M'_0 \geq M_0$ with $\|M'_0\| = \|M_0\|$ embeds into *M* over M_0).

Lemma ("model-homogeneous = saturated", Shelah)

- 1. *M* is λ -model-homogeneous if and only if *M* is λ -saturated.
- 2. If **K** is stable in μ and $M \in \mathbf{K}_{\mu}$, then there exists $N \in \mathbf{K}_{\mu}$ with N universal over M.

Limit models

By the "model-homogeneous = saturated" lemma, any two saturated models are isomorphic.

Sometimes, we will want to work in a single cardinal only. We attempt to replace saturated models with *limit models*:

Definition (Shelah)

Let **K** be an AEC with a monster model. Let $\lambda \geq LS(\mathbf{K})$ be such that **K** is stable in λ . Let $M_0 \leq_{\mathbf{K}} M$ both be in \mathbf{K}_{λ} and let δ be a limit ordinal. We say that M is (λ, δ) -limit over M_0 if there exists $\langle N_i : i \leq \delta \rangle$ increasing continuous with $M_0 = N_0$, $M = N_{\delta}$, and N_{i+1} universal over N_i for all $i < \delta$.

Uniqueness of limit models

Question

If M_1 , M_2 are respectively (λ, δ_1) , (λ, δ_2) -limit over M_0 , do we have that $M_1 \cong_{M_0} M_2$?

The answer is yes if $cf(\delta_1) = cf(\delta_2)$ (do a back and forth argument).

If the answer is yes, then the limit model will be saturated (when $\lambda > \mathsf{LS}(\mathbf{K})$).

Uniqueness of limit models

Question

If M_1 , M_2 are respectively (λ, δ_1) , (λ, δ_2) -limit over M_0 , do we have that $M_1 \cong_{M_0} M_2$?

The answer is yes if $cf(\delta_1) = cf(\delta_2)$ (do a back and forth argument).

If the answer is yes, then the limit model will be saturated (when $\lambda > \mathsf{LS}(\mathbf{K})$).

Uniqueness of limit models is closely related to unions of chains of $\lambda\text{-saturated}$ models being $\lambda\text{-saturated}.$

For T a first-order theory, limit models are unique if and only if T is superstable. If T is stable, limit models of length at least $\kappa_r(T)$ will be isomorphic.

Splitting-like independence

Definition (Shelah)

For $M \leq_{\mathbf{K}} N$, $p \in \mathrm{gS}(N)$ λ -splits over M if there exists $N_1, N_2 \in \mathbf{K}_{\lambda}$ such that $M \leq_{\mathbf{K}} N_{\ell} \leq_{\mathbf{K}} N$ for $\ell = 1, 2$ and $f : N_1 \cong_M N_2$ such that $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$.

Splitting-like independence

Definition (Shelah)

For $M \leq_{\mathbf{K}} N$, $p \in \mathrm{gS}(N)$ λ -splits over M if there exists $N_1, N_2 \in \mathbf{K}_{\lambda}$ such that $M \leq_{\mathbf{K}} N_{\ell} \leq_{\mathbf{K}} N$ for $\ell = 1, 2$ and $f : N_1 \cong_M N_2$ such that $f(p \upharpoonright N_1) \neq p \upharpoonright N_2$.

Definition

An AEC **K** (with a monster model) is λ -superstable if $\lambda \ge LS(\mathbf{K})$, **K** is stable in λ , and **K** has no long splitting chains in λ : for any $\delta < \lambda^+$, any $\langle M_i : i \le \delta \rangle$ increasing continuous with M_{i+1} universal over M_i , any $p \in gS(M_\delta)$, there exists $i < \delta$ such that pdoes not λ -split over M_i .

It turns out that for a first-order T, T is λ -superstable if and only if T is superstable and stable in λ .

Forking-like independence

Definition (V.)

For $M \leq_{\mathbf{K}} N$ both in \mathbf{K}_{λ} , $p \in gS(N)$ does not λ -fork over M if there exists $M_0 \in \mathbf{K}_{\lambda}$ such that M is universal over M_0 and p does not λ -split over M_0 .

Assuming λ -superstability, λ -nonforking is well-behaved over limit models: types have unique nonforking extensions.

Theorem (Shelah-Villaveces)

Let $\lambda \ge LS(\mathbf{K})$. If \mathbf{K} is categorical in some cardinal strictly above λ , then \mathbf{K} is λ -superstable.

Theorem (Shelah-Villaveces)

Let $\lambda \ge LS(\mathbf{K})$. If \mathbf{K} is categorical in some cardinal strictly above λ , then \mathbf{K} is λ -superstable.

Theorem (V.)

Let $\lambda > \mu \ge \mathsf{LS}(\mathbf{K})$. If \mathbf{K} is stable in λ , μ -tame, and has a unique limit model of cardinality λ , then \mathbf{K} is λ -superstable.

Theorem (Shelah-Villaveces)

Let $\lambda \ge LS(\mathbf{K})$. If \mathbf{K} is categorical in some cardinal strictly above λ , then \mathbf{K} is λ -superstable.

Theorem (V.)

Let $\lambda > \mu \ge \mathsf{LS}(\mathbf{K})$. If **K** is stable in λ , μ -tame, and has a unique limit model of cardinality λ , then **K** is λ -superstable.

Theorem (V.)

If **K** is λ -superstable and λ -tame, then **K** is λ' -superstable for all $\lambda' \geq \lambda$. In this case, λ -nonforking "transfers up" and becomes well-behaved for types over λ^+ -saturated models.

Theorem (V.)

If K is μ -tame and stable in all $\theta \in [\mu, \beth_{(2^{\mu})^+})$, then K is $\beth_{(2^{\mu})^+}$ -superstable.

Theorem (V.)

If K is μ -tame and stable in all $\theta \in [\mu, \beth_{(2^{\mu})^+})$, then K is $\beth_{(2^{\mu})^+}$ -superstable.

More generally, one can (assuming SCH) characterize the eventual stability spectrum of tame AECs:

Theorem (V.)

Assume SCH. Let **K** be a μ -tame AEC that is stable in some cardinal above μ . There exists a cardinal $\lambda'(\mathbf{K})$ and a class $\underline{\chi}(\mathbf{K})$ of regular cardinals such that:

1. If
$$\theta \ge \beth_{(2^{\mu})^+}$$
 is regular, then $\theta \in \underline{\chi}(\mathbf{K})$.
2. For all $\lambda \ge \lambda'(\mathbf{K})$, **K** is stable in λ if and only if $cf(\lambda) \in \underline{\chi}(\mathbf{K})$.

Question

If **K** is λ -superstable, are limit models of cardinality λ unique?

Question

If **K** is λ -superstable, are limit models of cardinality λ unique?

Definition

K has λ -symmetry if the following are equivalent for $M \in \mathbf{K}_{\lambda}$ limit, $a, b \in \mathfrak{C}$.

- 1. There exists $M_b \in \mathbf{K}_{\lambda}$ containing b with $M \leq_{\mathbf{K}} M_b$ such that $\mathbf{tp}(a/M_b)$ does not λ -fork over M.
- 2. There exists $M_a \in \mathbf{K}_{\lambda}$ containing a with $M \leq_{\mathbf{K}} M_a$ such that $\mathbf{tp}(b/M_a)$ does not λ -fork over M.

Theorem (VanDieren)

If **K** is λ -superstable and has λ -symmetry, then limit models of cardinality λ are unique.

Theorem (VanDieren)

If **K** is λ -superstable and has λ -symmetry, then limit models of cardinality λ are unique.

Theorem (VanDieren-V.)

If **K** is λ' -superstable for all $\lambda' \geq \lambda$, then **K** has λ -symmetry.

Theorem (VanDieren)

If **K** is λ -superstable and has λ -symmetry, then limit models of cardinality λ are unique.

Theorem (VanDieren-V.)

If **K** is λ' -superstable for all $\lambda' \geq \lambda$, then **K** has λ -symmetry.

Theorem (V.)

Let $\lambda \geq LS(\mathbf{K})$. If \mathbf{K} is categorical in some cardinal strictly above λ , then \mathbf{K} has λ -symmetry.

Uniqueness of limit models in strictly stable AECs

Theorem (Boney-V.)

If **K** is stable and μ -tame, then for any stability cardinal $\lambda \geq \beth_{(2^{\mu})^+}$, unions of chains of λ -saturated models of cofinality at least $\beth_{(2^{\mu})^+}$ are λ -saturated.

Theorem (Boney-VanDieren)

If **K** is stable in λ and λ -splitting has a continuity property, then limit models of length at least χ are unique (where χ is the least regular such that **K** has no long splitting chains of length $\geq \chi$).

Putting it all together

Theorem

Let **K** be a μ -tame AEC stable in some cardinal above μ . The following are equivalent:

- $1.~{\rm K}$ is stable on a tail of cardinals.
- 2. K has no long splitting chains in all high-enough cardinals.
- 3. K has a unique limit models in all high-enough cardinals.
- 4. K has a saturated model in all high-enough cardinals.

(3 implies 2 was first proven in a joint paper with Rami Grossberg). Assuming SCH, there is a (more complicated to state) analog to strictly stable AECs.

Some open questions

Theorem (V.)

If **K** is a μ -tame AEC stable on some cardinal above μ , then there is a stability cardinal below $\beth_{(2^{\mu})^+}$.

Some open questions

Theorem (V.)

If **K** is a μ -tame AEC stable on some cardinal above μ , then there is a stability cardinal below $\beth_{(2^{\mu})^+}$.

Question

Let **K** be a μ -tame AEC stable on a tail of cardinals. Is there a reasonable bound on the least λ such that **K** is λ -superstable?

If the AEC is (< \aleph_0)-tame), the least superstability cardinal is known to be below $\exists_{\exists_{(2^{\mu})^+}}$.

Some open questions

Theorem (V.)

If **K** is a μ -tame AEC stable on some cardinal above μ , then there is a stability cardinal below $\beth_{(2^{\mu})^+}$.

Question

Let **K** be a μ -tame AEC stable on a tail of cardinals. Is there a reasonable bound on the least λ such that **K** is λ -superstable?

If the AEC is (< \aleph_0)-tame), the least superstability cardinal is known to be below $\beth_{\beth_{(2^{\mu})^+}}.$

Question

Is there a (ZFC) characterization of the stability spectrum of tame AECs?

References

- Will Boney and Sebastien Vasey, Chains of saturated models in AECs, Preprint.
- Rami Grossberg and Sebastien Vasey, Equivalent definitions of superstability in abstract elementary classes. To appear in the JSL.
- Monica VanDieren and Sebastien Vasey. Symmetry in abstract elementary classes with amalgamation. Preprint.
- Sebastien Vasey, Saturation and solvability in abstract elementary classes with amalgamation. Preprint.
- Sebastien Vasey, Toward a stability theory of tame abstract elementary classes. Preprint.
- Will Boney, Rami Grossberg, Monica VanDieren, and Sebastien Vasey, Superstability from categoricity in abstract elementary classes. To appear in APAL.